悬挂行进, 锂电池包代替高压电 新能源空铁前景看好
来源:宝鄂实业
2019-03-18 11:46
点击量:次
日前,在四川省成都市双流西南航空港经济开发区,一列悬挂在空中的列车吸引了人们的注意——这是世界首条新能源空铁试验线。因为列车外观设计采用黑白相间的熊猫图案,而被人形象地称为“熊猫号”空铁。
“新能源空铁是一种新型城市轨道交通形式,属于轻型、中速、中等运量公共交通工具,不受地面交通状况影响,具有安全、绿色、环保、全程自动化、全天候运营、造价较低、性价比高等特点。”新能源空铁项目总设计师、西南交通大学首席教授翟婉明接受记者采访时表示。
具有完全自主知识产权
膨胀的汽车保有量,有限的城市道路资源,让城市交通日益不堪重负。如何发挥我国轨道交通设计、研发和建造方面的优势,提升城市综合交通运行效率?
建立更加高效的立体化交通体系是可行办法。专家表示,我国现存地铁、轻轨、汽车等地下、地面的交通方式,如果用支柱将轨道支撑在空中,让列车以悬挂的方式运行,就能开辟一条空中列车通道。
为推动空铁项目的研发,四川中唐空铁集团发起并投资,西南交通大学牵引动力国家重点实验室牵头,联合中国中车、中国中铁、攀枝花钢铁公司等7家企业,组建成新能源空铁产、学、研一体化协同项目平台。现在,世界首条新能源空铁试验线已在成都投入运行。
据悉,这条空铁试验线设计时速为60公里,单节车厢长18米,宽2.3米,定员120人。“试验线总长1461米,整个系统由乘客车站、正线轨道箱梁(含桥墩)、右线轨道箱梁(含桥墩)、弯道段(最小转弯半径30米)、上下坡段(最大坡度60‰)、客车车厢、静调库(充电装置)、大功率锂电池动力包等单元组成。”参与轨道建设的中铁宝桥集团有限公司总工程师吉敏廷介绍到。
“这标志着我国成为继德国、日本之后第三个掌握悬挂式单轨交通技术的国家。”翟婉明表示。同时,由于这条试验线是世界上首次采用锂电池包代替高压电用于悬挂式列车牵引,我国对相关技术具有完全自主知识产权,这是我国轨道交通领域的重大创新。
运营安全得到充分保障
远远望去,新能源空铁列车就像在行人头顶上运行,这种新技术安全性和稳定性可靠吗?
对此,翟婉明介绍到,车辆行驶时始终封闭于箱形轨道梁内部,不会发生脱轨事故,列车在空中专线上运行也不会与其他物体碰撞,运营安全得到充分保障。空铁列车自今年9月底挂线后,经过近2个月的调试运行,各项技术指标都达到了设计要求。
“站在车厢内,视野极为开阔,但车厢内的颠簸感觉还是比较明显。”一名体验过新能源空铁的乘客表示。
据了解,专家团队将继续在这条试验线上,对包括轨道系统、车身系统、牵引系统、信号系统等在内的整个空铁运行系统进行全方位测试,严格检验其技术可靠性。据专家介绍,目前来看最大的风险是空铁在运行中电能耗尽,为帮助乘客逃生疏散,车厢在紧急情况下可前后开窗,乘客可通过滑梯或简易梯疏散,也可由另外一辆空铁过来接走被困乘客,确保乘客安全疏散。
新能源空铁有哪些优势
目前,新能源空铁仍处在试验线上的技术检验与优化阶段,未来如果大规模商业化应用,新能源空铁有哪些优势?
对此,专家分析,相比地铁、城市轻轨和磁悬浮列车,新能源空铁的最大优势是适应性广泛,它最小转弯半径仅30米,这在城市轨道交通选线方面具有更大的灵活性,可以最大限度减少拆迁量。
在成本和效率方面,与修建地铁动辄大投入相比,新能源空铁的轨道与梁柱采用工厂预制,现场组装,施工简便,对周围影响小,建设周期更短。而且,由于列车采用电池牵引,可以在晚间用电低谷时存蓄电能,绿色环保。
不过,相对于地铁来说,新能源空铁在运量等方面还有差距。“空铁是众多交通方式中的一种,是城市轨道交通的重要补充。”翟婉明表示,新能源空铁作为现代新型交通工具,未来将在城乡与城际之间的立体交通对接、中心城市交通枢纽一体化衔接、热点旅游景区交通等领域具有广阔市场。
电池通过分解化学物质来发电。自从1799年意大利物理学家亚历山德罗·沃尔塔(Alessandro Volta)发明了电池,用来解决关于青蛙的争论以来,每块电池都有相同的关键部件:两个金属电极——带负电的阳极和带正电的阴极,由被称为电解质的物质隔开。当电池连接到电路时,阳极中的金属原子会发生化学反应。它们失去一个电子,变成带正电荷的离子,并通过电解质被吸引到正极。与此同时,电子(也带负电荷)则会流向阴极。但是它并没有通过电解质,而是通过电路在电池的外部传播,为它连接的设备供电。
阳极上的金属原子最终会耗尽,此时意味着电池耗尽电量。但在可充电电池中,可以通过充电来逆转这一过程,从而迫使离子和电子回到原位,准备再次启动循环之旅。纯金属制成的电极无法承受原子不断进出的压力而不发生坍缩,因此可充电电池必须使用组合材料,使阳极和阴极通过重复的充电循环保持形状。这种结构可被比作公寓建筑,其中有用于反应性元素的“房间”。可充电电池的性能在很大程度上取决于你能以多快的速度在这些房间里进出,而不会导致建筑物倒塌。
1977年,年轻的英国科学家斯坦·惠廷汉姆(Stan Whittingham)在新泽西州林登(Linden)的埃克森公司(Exxon)工厂工作,他建造了一个阳极,用铝来形成“公寓街区的墙壁和地板”,用锂作为活性材料。当他给电池充电时,锂离子从阴极移动到阳极,在铝原子之间的空隙中沉淀。当放电时,他们向另一个方向移动,通过电解质回到阴极一侧的空间。
惠廷汉姆发明了世界上第一个可充电的锂电池,这种硬币大小的电池足以为太阳能手表提供动力。但当他试图增加电压(使更多离子进出)或试图制造更大的电池时,它们就会继续燃烧。1980年,在牛津大学工作的美国物理学家约翰·古德诺夫(John Goodenough)取得了突破。古德诺夫是一名基督徒,曾在第二次世界大战中担任美国陆军气象学家,他也是金属氧化物方面的专家。他怀疑,与惠廷汉姆使用的铝化合物相比,肯定有某种物质能为锂提供更坚固的牢笼。
古德诺夫指导两名博士后研究人员系统性地在周期表中摸索,用不同的金属氧化物对锂进行比对,看看在它们崩溃前能从其中抽出多少锂。最终,他们确定了锂和钴的混合物,后者是遍布非洲中部的蓝灰色金属。锂钴氧化物可以承受半数锂被拉出的极限。当它被用作阴极时,这代表了电池技术向前迈出了一大步。钴是一种更轻便、廉价的材料,既适用于小型设备也适用于大型设备,而且大大优于市场上的其他材料。
如今,古德诺夫的阴极几乎出现在地球上的所有掌上设备中,但他并没有从中赚到一分钱。牛津大学拒绝申请专利,他本人也放弃了这项权利。但它改变了可能发生的事情。1991年,经过10年的修修补补,索尼将古德诺夫的锂钴氧化物阴极与碳阳极结合在一起,试图改善其新型CCD-TR1摄像机的电池续航时间。这是第一款用于消费产品的可充电锂离子电池,它改变了整个世界。
吉恩·伯迪切夫斯基(Gene Berdichevsky)曾是特斯拉的第七名员工。当这家电动汽车公司于2003年成立时,电池能量密度稳步提高已经持续了十年,每年的提高幅度约为7%。但到了2005年前后,伯迪切夫斯基发现锂离子电池的性能开始趋于平稳。在过去的七八年里,科学家们不得不竭尽全力去争取哪怕是0.5%的电池性能提高。
当时的进步主要来自工程和制造业的改进。伯迪切夫斯基说:“在现代化学反应被使用27年后,它们不断接受提炼。”材料更加纯净,电池制造商已经能够通过使每层都变得更薄的方式将更活跃的材料装入相同的空间中。伯迪切夫斯基称之为“从罐子里吸出空气”。但这也有其自身风险。现代电池由极薄的阴极、电解质和阳极材料的交替层组成,与铜和铝电荷收集器紧密地结合起来,将电子带出电池,送到需要的地方。
在许多高端电池中,塑料隔膜位于阴极和阳极之间,用来防止它们接触和短路,其厚度仅为6微米(约为人类头发厚度的1/10),这使它们很容易受到挤压损伤。这就是航空公司的安全视频现在为何警告称,如果你的手机掉进了机械装置里,不要试图调整座位。
对锂离子电池的每一次改进,都需要权衡取舍。提高能量密度会降低安全性,引入快速充电可能降低电池的循环寿命,这意味着电池的性能下降得更快。锂离子的潜力正在接近其理论极限。自从古德诺夫的突破以来,研究人员一直在试图寻找下一个飞跃,包括通过系统性地审视电池的四个主要组成部分——阴极、阳极、电解质和分离器,并使用越来越复杂的工具。
克莱尔·格雷(Clare Grey)是古德诺夫在牛津大学的学生,他始终在研究锂-空气电池,即用空气中的氧气充当另一个电极。从理论上讲,这些电池提供了巨大的能量密度,但要让它们可靠地充电,并且持续时间超过几十个周期,在实验室里已经够困难的了,更不用说在现实世界肮脏而不可预知的空气中了。
尽管格雷声称最近取得了突破,但由于上述问题,研究团体的注意力主要转向了锂-硫电池。它为锂离子提供了更便宜、更强大的替代品,但科学家们始终在努力阻止其在阴极上形成的树突(cathode),以及在阳极上的硫磺因重复充电而溶解。索尼声称已经解决了这一问题,并希望到2020年将含有锂-硫电池的消费类电子产品推向市场。
在曼彻斯特大学,材料学家刘旭清(Xuqing Liu)是那些试图从碳阳极中挤出更多能量的人之一,他将类似于石墨烯的二维材料结合起来,以便扩大表面积,从而增加锂原子的数量。刘旭清把它比作增加一本书的页数。这所大学还投资建造干燥的实验室,这将使其研究人员能够安全、轻松地交换不同的元件,以测试不同的电极和电解质的组合。
令人难以置信的是,即使古德诺夫本人也在研究这个问题。去年,94岁的他发表了一篇论文,描述了一种容量是现有锂离子电池三倍的电池。这受到广泛质疑。一位研究人员说:“如果是古德诺夫之外的其他人发表了这篇文章,我可能就要骂娘。”
但是,尽管有成千上万的论文发表,数十亿美元的资金投入,数十家创业公司成立并提供资金支持,自1991年以来,我们大部分消费电子产品的基本化学功能几乎没有改变。在成本、性能和消费性电子产品的便携性方面,还没有什么能够取代锂钴氧化物和碳的组合。iPhoneX的电池的原理几乎和索尼的第一台便携式摄像机一样。
因此,2008年,伯迪切夫斯基从特斯拉离开,开始专注于研究新的电池化学反应。他对寻找石墨阳极的替代品尤其感兴趣,他认为这是制造更好电池的最大障碍。伯迪切夫斯基说:“石墨的使用已经有六七年了,它现在基本上是用在电池的热力学容量上。”2011年,他与特斯拉的前同事亚历克斯·雅各布斯(Alex Jacobs)、佐治亚理工学院材料学教授格莱布·尤辛(Gleb Yushin)共同创立了Sila Nanotechnologies。他们在阿拉米达的湾区办公室有开放式布局,以雅达利游戏命名的会议室,还有充满熔炉和燃气管道的工业实验室。
在调查了所有可能的解决方案之后,三人从理论上确定硅是最有前途的材料。他们只需要让技术发挥作用。许多人在他们之前尝试过,但都以失败告终。不过,伯迪切夫斯基和他的同事们对他们的成功表示乐观。一个硅原子可以附着4个锂离子,这意味着与重量相近的石墨阳极相比,一个硅阳极可以储存10倍的锂。这一潜力意味着,美国国家研究院对硅阳极材料充满了兴趣,Amprius、Enovix和Envia等风投机构支持的初创企业也是如此。
当锂离子在电池充电时附着在阳极上时,它会轻微膨胀,然后在使用时再次收缩。在重复的充电循环中,这种膨胀和收缩破坏了固态电解质界面层,后者是一种保护物质,在阳极表面形成斑块。这种损害会产生副作用,消耗电池中的部分锂。伯迪切夫斯基说:“它被困在无用的垃圾里。”
随着时间的推移,这是智能手机开始快速损失储能的主要原因。石墨阳极膨胀和收缩约7%,因此在性能开始急剧下滑之前,它可以完成大约1000个充放周期。这相当于一部智能手机持续两年、每天充电。但由于硅颗粒能吸附如此多的锂,它们在充电时膨胀的幅度要大得多(高达400%)。大多数硅阳极经过几次充电循环后会发生断裂。在实验室的5年多时间里,Sila Nanotechnologies创造了一种纳米复合材料来解决膨胀问题。