定制热线: 400-678-3556

宝鄂百科

太阳能电池与太阳能电池组件有何区别?

来源:宝鄂实业    2019-03-19 16:27    点击量:
经过多年的发展,我国光伏设备行业已基本具备了全系列太阳能电池制造能力。中国光伏设备企业生产的设备应用包括硅材料生产、硅材料加工、硅晶片加工、太阳能电池芯片生产以及相应的纯水制备、环保处理、净化工程施工。其中晶体硅生长设备增长最快。国内单晶硅生长炉以优异的性价比占据国内市场的绝对优势,并批量出口到亚洲。国内多晶硅锭炉在产品主要性能指标上几乎与国外设备相同,并已开始在国内光伏企业中广泛应用。
 
 
太阳能电池模块:是指太阳能电池组装的硅片。太阳能电池:包括太阳能组件的整个部件。太阳能电池组件由高效晶体硅太阳能电池片、超白回火玻璃、EVA、透明TPT背板、铝合金框架组成。使用寿命长,机械压力大,外力大。单个太阳能电池不能直接用作电源。作为电源,几个电池必须串联,并联,并紧密密封在组件中。太阳能组件(又称太阳能电池板、光伏组件)是太阳能发电系统的核心部分,是太阳能发电系统的重要组成部分。它的作用是把太阳能转换成电能,或者把它送到蓄电池里储存,或者驱动负载。
 
 
太阳能组件的质量和成本将直接决定整个系统的质量和成本。太阳能电池,也被称为“太阳能芯片”或“光电池”,是光伏半导体晶圆,利用太阳能光直接发电。只要被照亮,它就能在瞬间输出电压,并在有回路的情况下产生电流。光伏(光伏,光伏,简称PV),简称光伏。太阳能电池是一种通过光电效应或光化学效应将光能直接转化为电能的装置。使用光电效应的薄膜太阳能电池是主流,而使用光化学效应的太阳能电池仍处于起步阶段。数据显示,中国太阳能电池继续保持生产和性价比优势,国际竞争力不断增强。产量继续增加。据估计,中国太阳能电池产能将超过40GW,产量将超过24GW,仍将占据全球一半的份额。
 
 
随着太阳能电池行业的不断发展,国内行业的竞争也越来越激烈。大型太阳能电池公司与资本运营的整合越来越频繁。国内优秀的太阳能电池制造商越来越重视对行业市场的研究,特别是对行业发展环境和产品购买者的深入研究。因此,大量国内优秀的太阳能电池品牌迅速涌现,并逐渐成为太阳能电池行业的领导者。
今年年初,《新能源汽车动力蓄电池回收利用管理暂行办法》出台,给讨论了很久却一直没有明显进展的梯次利用行业带来利好。很多人都觉得梯次利用大有可为,但瓶颈到底在哪里?除了政策、商业模式,安全和技术肯定是更加关键的一环。再好的商业机会,如果风险过高,也不能形成规模,获得长期发展。电池老化以后,性能会发生怎样的变化,在安全性上是否有突变的可能?老化到怎样的程度,风险对应有多大?一些关键技术问题的回答,对行业发展将是决定性的。
 
 
关于论文,对试验现象进行了非常详细的描述,但逻辑性不强。可以关注一下热失控前电池温度、电压、排气具体现象,相信对于建立监测预测热失控安全系统,有一些借鉴意义,毕竟并不是每个人都有机会亲手去进行这类试验的。
 
 
方形LiCoO2 -石墨电池,标称容量为6.8Ah,在烤箱中被外部加热。该研究包括循环老化的电芯,储存在60℃的非循环电芯以及在室温下储存的非循环电芯。研究了工作和非工作(失效)电芯。
 
在外部加热时,所有电池都会产生热失控,释放烟雾和气体。对于大约一半的工作电芯,在热失控后约15秒内,积聚在烘箱中的气体被点燃导致气体爆炸,并伴随着主要的烟气释放过程。
 
无论是否曾经循环过的电芯,并没有影响气体爆炸的发生,它们发生在0-300个全深循环的所有循环老化水平。
 
使用FTIR分析气体。无论是否有火焰出现,都检测到HF气体的存在。
 
另一种释放出潜在有毒气体的HF前体POF3,也与HF同时检测到。另外检测到有害气体CO 。热失控温度约为190°C,并且显示与老化过程中的循环次数有微弱的相关性,在0 至 300次循环的测试循环范围内,100至200次循环之间,是产生最少有毒气体的老化阶段。
 
测试了三个失效电芯,其中一个在229次循环后在循环中发生突然失效,还有两个未循环但在60°C保存10个月的电芯也出现了失效。失效电芯也会进入热失控状态; 然而,它们对热失控温度升高和温度升高速率的反应明显较低。这些电池没有火花、燃烧或瓦斯爆炸现象。
 
 
1 引言
 
与其他类型的电池相比,锂离子电池发热较大,其气体排放,爆炸、起火的风险更高。这些风险还远远没有被充分理解,而通过研究和事故分析是有可能提高系统安全性的。风险的类型和严重程度取决于不同的应用和电池系统的大小。由于电池和模块故障的可传播性,随着电池系统尺寸的增加,故障后果可能会显著增加。
 
锂离子电池包含所有必要的火焰三角形的三个部分; 热/点火器,可燃物质和氧气。此外,一旦过热,典型地从70℃~120℃开始,锂离子电池开始臌胀并能够释放气体(排气)。排出的气体易燃且有毒。如果温度足够高,达到的150℃~200℃,电池自生热进入加速阶段,热失控(TR)可能发生。术语热失控的起始温度是指放热反应开始并最终导致热失控的温度,而热失控温度是指热失控的非常快速的温度升高。热失控通常伴随着大量烟气释放,可能伴随电池箱破损,燃烧或瓦斯爆炸。因此热失控过程存在两种主要类型的爆炸:电池壳体爆炸和与空气混合的可燃排放气体的气体爆炸。圆柱形和硬质方形电池可以产生高内部压力,因此设计为通过内置电池安全阀释放气体,但是如果排气故障,电池内部可能会产生极大的压力,导致电池壳体爆炸。有两种这样的爆炸形式,一种是电池内部的爆炸,另一种是封闭或半封闭外壳中积累的可燃气体与空气的混合气体延迟点燃引起的爆炸。可燃气体爆炸的后果可能比电池爆炸的后果严重得多。
 
排出的气体可以包含溶剂蒸发和分解生成的产物,例如CO,CO2,H2,CH4。除CO外,还可以释放大量不同的有毒化合物,包括氟化物气体。氟化氢(HF)已经引起了最多的关注,是非常有毒的气体 。很少有已经发表的研究报告说明商业锂离子电池滥用期间释放的HF量,和电解质燃烧释放的HF的量 。电池中的氟来自锂盐,如LiPF 6,而且还来自电极粘合剂,如PVdF,电极材料和涂层,例如氟磷酸盐和AlF3阴极涂层,以及含氟添加剂如阻燃剂。电池安全性非常复杂,整体观点非常重要,例如通过引入AlF3涂层,热失控发生的风险可以降低,而有毒氟化物气体排放和气体爆炸的风险可能会增加。因此整体安全难以评估,这取决于电池的大小和情况,并且对一个参数的改进实际上可能会恶化整体安全性。
 
有许多不同类型的滥用测试,常见的是外部加热。有几种类型的外部加热方法适用于锂离子电池,例如在烘箱中加热,通过IR辐射加热,加热膜或其他加热器,在密闭腔室内使用加热速率热量计(ARC)或其他类型仪器。到目前为止,针对新电芯的研究很多,但很少有研究衰老对安全性的影响的。元件的性能在老化过程中可能会发生变化,但实际要求却是,在整个电池寿命期间都需要具有高电池安全等级。老化通常以日历和周期老化的形式出现。为了缩短测试时间,存储和循环所述电芯通常在升高的温度下进行,例如35 - 55°C,但是,在这些温度下的测量结果与在环境温度下使用时所获得的数据并不完全相同,例如20℃,因为可能发生其他方面的分解反应。锂离子电池的老化过程是非线性的和复杂的 ,还没有被完全理解。例如,在老化期间,固体电解质界面(SEI)层发生变化,SEI在热失控的早期阶段发挥重要作用。有研究利用量热技术描述了SEI这种改性的演变,利用XRD,XPS,SEM和拉曼光谱分析表面,描述了热失控的三个主要阶段。
 
有试验通过ARC测试研究了日历老化的索尼18650电池的热稳定性,发现老化电芯开始放热温度高达70°C,说明老化电芯显示出更高的放热开始温度。
 
另外有人研究了经过10次和200次循环后0.75 Ah非商用石墨/锂钴氧化物(LCO)锂离子电池,发现在针刺滥用试验中,200次循环后热安全性下降。
 
有人研究了在60℃下储存至36周的2 Ah石墨/ LMO-NMC Li离子18650电池,在ARC测试中发现36周龄电芯的放热反应和热失控起始温度较低。
 
相反,另外有人研究了在55°C储存10到90天的4.6 Ah石墨/ LMO锂离子电池,发现自热和热失控的起始温度随着老化的增加而增加。
 
另一个试验,研究了1.5 Ah石墨/ LMO-NMC高功率Li离子18650电池在ARC测试中对循环老化的热响应的影响,发现第一个放热响应以及热失控的开始温度显著降低,起始温度低至30.7℃,并且在- 10°C进行的1C循环的电池的阳极上也发现镀锂现象。
 
一组人研究了石墨/ NMC 18650新的和循环老化电芯在0℃至70%健康状态(SOH)下使用1C的ARC测试的安全性。老化电芯热安全性降低,其具有低至30℃的自热起始温度以及较早的热失控。同一作者还通过针刺滥用试验研究安全性,并发现老化电芯具有延迟但更剧烈的热失控。一般情况下,低温循环阳极镀锂和以过高的电流充电,都会提高锂离子电池的风险性。
 
本次研究涉及的工作中,研究了在20°C和60°C下储存的未循环电芯以及100,200或300个C/2深度循环电芯的锂离子电芯安全性,所有电芯的类型相同,一种商用6.8 Ah石墨/ LiCoO 2 锂离子电池。通过外部加热(烘箱)形式的滥用测试评估安全性,同时进行FTIR气体测量。进行一次ARC测试以比较安全评估方法。
 
 
这些电池全部来自同一批商业化的锂离子电池,其标称容量和电压分别为6.8Ah和3.75V,LCO阴极,石墨阳极,聚合物隔板和方形外观,参见表1详细的电芯参数。由于电解液中存在LiPF6盐,电池中含有氟,但电池中的其他部分也可能含有氟,参见引言部分中的示例。需要说明,本次试验没有分析电芯中其他潜在的氟来源。
 
 
 
使用多通道Digatron 电池测试仪或带Booster 20 A模块的Metrohm Autolab 测量每个电池的容量。电池容量测量使用2.50V和4.20V的电压限制,1.4A(约C/5)的电流和0.05A的切断充电电流。在第一次充电之后,施加三次完整的放电-充电循环。在老化之前,用三个循环中的第一个循环测量放电容量,而在老化之后,使用第三循环的放电容量来确定电池容量。

产品相关推荐