了解五大新能源汽车电池类型及盘点
来源:宝鄂实业
2019-03-20 09:14
点击量:次
铅酸电池作为比较成熟的技术,因其成本较低,而且能够高倍率放电,依然是唯一可供大批量生产的电动车用电池。北京奥运会时,有20辆使用铅酸电池的电动汽车,为奥运会提供交通服务。
但是铅酸电池的比能量、比功率和能量密度都很低,以此为动力源的电动车不可能拥有良好的车速及续航里程。
二、镍镉电池和镍氢电池
虽然性能好于铅酸电池,但含有重金属,使用遗弃后对环境会造成污染。 镍氢动力电池刚刚进入成熟期,是目前混合动力汽车所用电池体系中唯一被实际验证并被商业化、规模化的电池体系,现有混合动力电池99%的市场份额为镍氢动力电池,商业化的代表是丰田的普锐斯。目前全球主要的汽车动力电池厂商主要有日本的PEVE和 Sanyo,PEVE占据全球Hybrid动力车用镍氢电池85%的市场份额,目前主要的商业化的混合动力汽车如丰田的Prius、Alphard和 Estima,以及本田的Civic,Insight等均采用PEVE的镍氢动力电池组。在我国,长安杰勋、奇瑞A5、一汽奔腾、通用君悦等品牌轿车已经在示范运行,他们采用的也都是镍氢电池,不过电池主要向国外采购,国内镍氢电池在汽车上的运用仍处于研发匹配阶段。
三、锂电池
传统的铅酸电池、镍镉电池和镍氢电池本身技术比较成熟,但它们用在汽车上作为动力电池则存在较大的问题。目前,越来越多的汽车厂家选择采用锂电池作为新能源汽车的动力电池。
因为锂离子动力电池有以下优点:工作电压高(是镍镉电池氢-镍电池的3倍);比能量大(可达165WH/㎏,是氢镍电池的3倍);体积小;质量轻;循环寿命长;自放电率低;无记忆效应;无污染等。
当前许多知名的汽车制造商都致力于开发动力锂电池汽车,如美国福特、克莱斯勒,日本丰田、三菱、日产、韩国现代、法国Courreges、Ventury等。而
国内汽车制造商比亚迪、吉利、奇瑞、力帆、中兴等车企也纷纷在自己的混合动力和纯电动汽车中搭载动力锂电池。
目前阻碍动力锂离子电池发展的瓶颈是:安全性能和汽车动力电池的管理系统。安全性能方面,由于锂离子动力电池具有能量密度大、工作温度高、工作环境恶劣等方面的原因,加上以人为本的安全理念,因此,用户对电池的安全性提出了非常高的要求。汽车动力电池的管理系统方面,由于汽车动力电池的工作电压是12V或24V,而单个动力锂离子电池的工作电压是3.7V,因此必须由多个电池串联而提高电压,但由于电池难以做到完全均一的充放电,因此导致串联的多个电池组内的单个电池会出现充放电不平衡的状况,电池会出现充电不足和过放电现象,而这种状况会导致电池性能的急剧恶化,最终导致整组电池无法正常工作,甚至报废,从而大大影响电池的使用寿命和可靠性能。
四、磷酸铁锂电池
磷酸铁锂电池也是一种锂电池,其比能量不到钴酸锂电池的一半,但是其安全性高,循环次数能达到2000次,放电稳定,价格便宜,成为车用动力新的选择。
比亚迪提出的“铁电池”,业界人士认为其为磷酸铁锂电池的可能性较大。
五、燃料电池
简单地说,燃料电池(Fuel Cell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。
最有望用于汽车的是质子交换膜燃料电池。它的工作原理是:将氢气送到负极,经过催化剂(铂)的作用,氢原子中两个电子被分离出来,这两个电子在正极的吸引下,经外部电路产生电流,失去电子的氢离子(质子)可穿过质子交换膜(即固体电解质),在正极与氧原子和电子重新结合为水。由于氧可以从空气中获得,只要不断给负极供应氢,并及时把水(蒸汽)带走,燃料电池就可以不断地提供电能。
因为燃料电池直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制。目前燃料电池系统的燃料—电能转换效率在45%~60%,而火力发电和核电的效率大约在30%~40%。
在发展新能源汽车上,镍氢电池技术最成熟,未来3年内仍将是新能源车的主流,之后镍氢电池技术将和磷酸铁锂、氢燃料电池三分天下,5年后将逐渐被锂电池及燃料电池所取代。
主要有非晶硅( a-Si )、微晶硅( μc-Si:H )和多晶硅( p-Si )薄膜等几类。由于硅是一种间接带隙材料,禁带宽度为1.7 eV,在带隙对应的波长附近对光子仅有非常低的吸收系数,尤其是在800~1100nm的波长范围,对光子的吸收长度达到10μm~3mm,远超出了薄膜太阳能电池中核心吸收层(硅薄膜)的厚度,在此光谱范围对近红外波段的光吸收系数不高,限制了其光电转换效率,而且非晶硅光电转换效率会随着光照时间的延长而衰减,即所谓的光致衰退(S-W)效应,光致稳定性不好。可以通过采用有不同带隙的多结迭层,降低表面光反射,使用更薄的吸收层等方法进行改进。微晶硅薄膜材料具有过渡层结构,转换效率高,光致衰退效应相对较弱,制备技术能与现有非晶硅薄膜电池兼容。但微晶硅薄膜太阳能电池带隙较窄、吸收系数低,在材料制备中生长速率较低沉、积速率较慢的问题,不利于降低制造成本。多晶硅薄膜材料在长波段具有高的光敏性,可见光吸收系数较高,光照稳定性较高。材料制备工艺相对简单,无光致衰退效应,但成本依然较高。
2.2 无机化合物太阳能电池
主要包括砷化镓( GaAs )III-V 族化合物、硫化镉(CdS)、碲化镉(CdTe)及铜铟硒类薄膜电池等。III-V族化合物半导体光伏材料如砷化镓(GaAs)、磷化铟(InP)等,其禁带宽度在1.0~1.5eV,与太阳光谱匹配较好,具有直接带隙且太阳光吸收波段宽,在可见光范围内,GaAs等材料的光吸收系数远高于硅基材料,化合物半导体转化效率是非晶硅的两倍以上,不过成本则是非晶硅的十倍。GaAs光伏材料组成元素的原子量较大,造成材料本身相对质量大,由于Ga比较稀缺,As有毒,所以其发展受到了限制,还不适合大规模生产。
CdTe薄膜太阳能电池结构简单,成本相对较低,但CdTe材料存在自补偿效应,制备高电导率同质结很困难,电池多为异质结结构。CdS的结构与CdTe相同,晶格常数差异小,是CdTe基电池最佳的窗口材料。典型CdTe电池结构的主体是由厚约2 μm的p型( CdTe )层与0.1 μm的n型(CdS)层组成,光子吸收主要发生在CdTe层。CdS、CdTe薄膜电池的转换效率比非晶硅薄膜太阳能电池转换效率高且性能稳定,成本也较单晶硅电池低,虽然已实现了大规模商业化生产,但发展速度缓慢,主要原因是Cd有剧毒、Te为稀有元素。
CIGS 是由铜、铟、镓以及硒所组成的多元化合物半导体光伏材料。该材料是由硒化铜铟(CIS)以及硒化铜镓所组成的固溶体。CIGS属于四面体结构半导体,黄铜矿晶体结构,其能隙依据铟、镓比例的不同可从1.0eV(硒化铜铟)变化至1.7eV(纯硒化铜镓)。CIGS属于多晶薄膜的形式,其晶体结构不同于硅晶体,是异质界面系统,具有近似最佳的光学能隙,光吸收率高,其能隙还可以通过Ga和Al部分取代In,或S部分取代Se进行调节,厚度为2~3μm,具有长期稳定性好、无光诱导衰变、抗辐射能力强、成本低等特点。单结理论效率最高30%,目前所能达到不到20%。电池的基本结构为基底上溅镀一层约0.5~1.0μm的Mo背电极以利于空穴传导,CIGS光吸收层约为1.5~2.0μm,往上是约0.05μm 厚的N型半导体CdS,兼具缓冲层的功能,帮助电子有效传导,再往上有一层约0.1μm 厚的N型 i-ZnO 层,防止电池元件效能下降,再溅镀A-ZnO作为透明导电层窗口。目前常用的真空蒸发法和溅射法制备易造成原材料的浪费,In为稀有元素,制备过程中材料性质易变。
为了进一步提高其光电转换效率,构筑多结太阳能电池结构是一种最直接的方法。由于任何单一半导体材料只能将太阳光谱中一定范围的光能有效地转换成电能,从根本上制约了效率的提高。因此将具有不同禁带宽度的半导体材料组合起来,分别吸收利用不同波长范围的入射光,顶层电池的能带最高。往下依次减少,这样能量高的光子被上面能带高的电池吸收,而能量低的光子则能透过上面的电池而被下面能带低的电池吸收,从而有效地提高了太阳能电池的效率,由此产生了双结、三结等多结叠层太阳能电池。目前主要有GaInP/Ga(In)As/Ge, Al-GaAs/GaAs,GaInP/GaAs和GaInP/GaInAs等类型。
2.3 有机太阳能电池
有机太阳能电池是以有机半导体作为实现光电转换的活性材料,与无机太阳能电池相比,它具有成本低、厚度薄、质量轻、制造工艺简单、可做成大面积柔性器件等优点,其主要缺点是能量转换效率较低,稳定性差和强度低。有机太阳能电池主要有单层结构的肖特基电池、双层p-n异质结电池以及P型和N型半导体网络互穿结构的体相异质结电池。但是现阶段仍存在激子结合能大、电子迁移率低,从而导致转化效率低且寿命短等缺点,研究方向是提高材料的电导率、成膜技术、器件工艺制作水平和开发新的材料等。
2.4 敏化太阳能电池
以有机敏化分子作为吸光的主要材料,包括染料敏化和量子点敏化,目前染料敏化太阳能电池光电效率稳定在13%以上,制作成本仅为硅太阳能电池的1/5~1/10,材料来源广泛,成本低廉,对设备要求低,生产工艺简单,适合大规模的生产应用。量子点材料的量子限制效应可以调节能级结构,使其吸收光谱能够匹配太阳光光谱;量子点吸收一个光子能够产生多个光子;量子点电子态与光阳极导带间的部分重合提供了电子的快速传递,阻碍了电子—空穴对的复合。它与染料敏化太阳能电池不同点在于采用不同的量子点来替代有机染料作为光吸收体,并且通过调整不同的量子点组成、尺寸及结构来实现太阳光全光谱吸收进而产生更多的光生电子。
2.5 钙钛矿太阳能电池
钙钛矿太阳能电池是使用具有AMX3钙钛矿型晶体结构类型材料作为光吸收层的一类电池,经过几年的发展,能量转化效率飞速增长到了22.1%,逼近了单晶硅太阳能电池25%的最高转化效率。由于具有更低的材料成本和制备成本,被视为可能替代硅的新一代太阳能电池。可分为n-i-p和p-i-n两种器件结构,其中n-i-p结构是指电子传输层/钙钛矿层/空穴传输层的器件结构,而正好p-i-n结构正好相反。柔性钙钛矿电池本身膜厚极小,在一定程度上具有较好的弯曲能力,还具备开路电压高、适用温度范围宽、弱光性好、温度稳定性高等优点,并对太阳光照角度不敏感,同时材料的制备温度较低(<150℃),适合直接在柔性基底上进行制备。