定制热线: 400-678-3556

宝鄂百科

解析锌锰干电池充电器电路及工作原理介绍

来源:宝鄂实业    2019-03-30 10:50    点击量:
BMS锂电池保护板工作原理和选购方法。BMS锂电池保护板十分重要在电池保护系统中,锂电池PACK设计过程中一定会用到锂电池保护板或者相应的BMS才能更好的设计锂电池组,甚至可以协助品质部分一起分析异常电池或电路。本文存能电气小编就来介绍锂电池保护板BMS的原理和选购技巧。
 
锂电池的主要构成:
 
锂电池主要由两大块构成,电芯和保护板PCM(动力电池一般称为电池管理系统BMS),电芯相当于锂电池的心脏,管理系统相当于锂电池的大脑。电芯主要由正极材料、负极材料、电解液、隔膜和外壳构成,而保护板主要由保护芯片(或管理芯片)、MOS管、电阻、电容和PCB板等构成。
 
什么是BMS?
 
 
BMS其实就是锂电池管理系统,顾名思义,是专门用来进行锂电池运行管理的模块,对象是锂电池。主要对象是二次电池,主要就是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,可用于电动汽车,电瓶车,机器人,无人机等。此外,BMS还是电脑音乐游戏文件通用的一种存储格式和新一代的电信业务管理系统名。
 
BMS锂电池保护板工作原理:
 
锂电池之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池组件总会跟着一块精致的保护板和一片电流保险器出现。
 
锂电池的BMS保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。
 
普通锂电池BMS保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。
 
BMS锂电池保护功能介绍:
 
 
1.电池保护,和PCM差不多,过充、过放、过温、过流,还有短路保护。
 
2.能量均衡,整个锂电池包,由于很多节电池串联,工作一定时间后,由于其电芯本身的不一致性、工作温度的不一致性等原因的影响,最后会表现出很大的差异,对电池的寿命和系统的使用有巨大的影响,能量均衡就是弥补电芯个体之间的差异去做一些主动或被动的充电或放电的管理,确保电池的一致性,延长电池的寿命。
 
3.SOC计算,由于技术的发展,SOC的计算积累的很多的方法,精度要求不高的可以根据电池电压判断剩余电量,精确的方法主要的是电流积分法(又叫Ah法),Q=∫idt,还有内阻法、神经网络法、卡尔曼滤波法等。
 
4.通信,不同的系统对通信接口的要求不一样,主流的通信接口有SPI、I2C、CAN、RS485等。其中汽车和储能系统主要是CAN和RS485。
 
⒌电池间的均衡:即为单体锂电池均衡充电,使电池组中各个电池都达到均衡一致的状态。均衡技术是目前世界正在致力研究与开发的一项电池能量管理系统的关键技术。
 
BMS锂电池保护板选购方法:
 
现在市面上面充斥着各种保护板锂电池,好点的有三洋的,差的有UF的,锂电池保护板本身也有很大区别,选择一个合适自己电筒的保护板电池是很重要的。通常用带保护电池的是不带保护电路的电筒,比如白炽灯泡手电。就电芯本身而言,品质好而又常见的有三洋,松下,索尼,三星,AW。
 
三洋:适合高放电平台,通常大于1A的电路建议用三洋。三洋高放电平台比松下更持久,电量更足。
 
松下:适合低放电平台,通常小于1A的电路建议用松下。松下低平台放电比三洋更持久,电量更足。
 
索尼:性能和三洋差不多,比三洋略低。自从索尼生产电芯物质时工艺原因混入了金属粉末,导致可能起火爆炸而召回后,我就没再用过索尼。但据说现在已经改进了,不过有三洋用了,一般不考虑,除非价格很合适。
 
以上就是BMS锂电池保护板工作原理和选购方法,BMS锂电池系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。所以,为你的电池配备一个BMS保护系统很非常重要的。
锂离子电池,又称为摇椅电池,他的主要组成部分是正极、负极、隔膜及电解液。当前锂离子动力电池正极一般采用尖晶石型 LiMn2O4或镍基层状氧化物, 负极以石墨为主,电解液为含 LiPF6 的碳酸酯(EC,EMC)有机溶液。LiMn2O4是一种被认为最安全的材料,也是最廉价的正极材料,已经被多种型号的动力电池采用。Li(NiCo)O2 容量高,但安全性能较差,需通过掺杂改性并限制其使用电压等手段来改善其安全性能;从整车安全和电池成本考虑,磷酸铁锂LiFePO4 安全性好、寿命长是最适合在汽车动力电池上应用的锂离子电池正极材料。
 
锂离子电池能量密度在很大程度上取决于负极材料,从锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。石墨具有六元环碳网层状结构,碳碳之间是SP2 杂化的,层层之间是分子作用力连接。石墨中存在两种不同的晶体结构:六面体石墨(2H)和菱面体石墨(3R)。2H相具有ABABA特征堆积,3R相的堆积结构则是ABCABC。两种相可以相互转变,2H相是热力学稳定,在石墨中较多,约占总体的五分之四在锂离子电池负极材料中,天然石墨和人造石墨一直是使用最大的负极材料,但是人造石墨由于在生 产过程中需要高温处理,使其生产成本大幅提高并对环境产生不利影响,相对于人造石墨而言,天然石墨有很多优点,它的成本 低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等,这些为其在锂离子电池行业的应用奠定了 良好的基础。
 
天然石墨分无定形石墨(土状石墨或微晶石墨)和鳞片石墨两种。理论容量为372 mAh/g。无定形石墨纯度低,石墨晶面间距(d002)为0.336 nm。主要为2H晶面排序结构,即石墨层按ABAB…顺序排,单个微晶之间的取向呈现各项异性,但经过加工,微晶颗粒相互之间有一定的交互作用,形成块状或颗粒状的粒子时具有各向同性性质。且形成的块状颗粒容易粉碎成形状较好的颗粒。
 
在锂离子嵌入脱嵌过程中体积变化小,结构相对稳定,但是可逆比容量仅260 mAh/g,不可逆比容量在100 mAh/g 以上。鳞片石墨的结晶度高,片层结构单元化大,具有明显的各向异性。这种结构决定了石墨在锂嵌入和脱嵌过程中体积产生较大的变化,导致石墨层结构破坏,进而造成较大的不可逆容量损失和循环性能的剧烈恶化。
 
作为锂离子电池负极石墨时,微晶石墨和鳞片石墨均有首次不可逆容量大的缺点,且鳞片石墨循环性能和大电流充放电性能差,因此,在使用时,研究者们往往侧重于对天然石墨进行改性研究,改善其自身结构缺点,提升电池的性能。其中,对石墨负极改性主要有表面处理、表面包覆以及元素掺杂等手段,下面将对其改性研究详细阐述。
 
全面解读锂离子电池石墨负极材料
 
石墨负极材料的改性研究
1.表面氧化
表面氧化主要是在不规整电极界面(锯齿位和摇椅位)处生产酸性基团(如-OH,-COOH 等),嵌锂前这些基团可以阻止溶剂分子的共嵌入并提高电极/电解液间的润湿性,减少界面阻抗,首次嵌锂时转变为羧酸锂盐和表面-Oli基团,形成稳定的SEI膜。此外,氧化可以出去石墨中的一些缺陷结构,产生的纳米级微孔做外额外的储锂空间,提高储锂容量。
 
表面氧化通常包括气相氧化和液相氧化两种。气相氧化主要是以空气,O2,O3,CO2,C2H2等气体为氧化剂,与石墨进行气固界面反应,减少石墨表面的活性点,降低首次不可逆容量损失,同时,生成更多的微孔和纳米孔道,增加锂离子的存贮空间,有利于提高可逆容量,改善负极性能。吴宇平等将普通的天然石墨在500 ℃下用空气做氧化剂来进行氧化改性。改性后石墨结构的稳定性得以提高,在去缺陷结构的同时增加了纳米级微孔及通道数目。另外,氧化时形成的氧化层与石墨结合紧密,形成致密的钝化膜,防止了电解液对石墨的溶剂化反应,提高了石墨的可逆容量。液相氧化法是利用硫酸铈、硫酸、硝酸、过氧化氢等强氧化剂溶液,通过液相-固相反应来实现。尹鸽平等利用硫酸和过硫酸铵饱和溶液对天然石墨进行表面氧化,将石墨的可逆容量提高至349 mAhg-1,首次库仑效率有一定提高。
 
2.表面包覆
石墨负极材料的表面包覆改性主要包括碳包覆、金属或非金属及其氧化物包覆和聚合物包覆等。通过表面包覆实现提高电极的可逆比容量、首次库伦效率、改善循环性能和大电流充放电性能的目的。石墨材料表面包覆改性的出发点主要有以下两点:
 
通过表面包覆,减小石墨的比表面积,减小形成SEI膜消耗掉的锂,进而提高材料的首次库仑效率;
 
通过表面包覆,减少石墨表面的活性点,使表面性质均一,避免溶剂的共嵌入,减少不可逆损失。
 
3.无定形碳包覆
在石墨外包覆一层无定形碳制成“核-壳”结构的C/C复合材料,使无定形碳与溶剂接触,避免溶剂与石墨的直接接触,阻止因溶剂分子的共嵌入导致的石墨层状剥离现象,扩大了电解液的选择范围,王国平等人将天然鳞片石墨制成球形石墨,在其表面包覆一层纳米非石墨化碳材料制成具有核-壳结构的改性球形石墨,改性后的球形石墨振实密度明显提升,且可逆容量提升至365 mAh·g-1,同时,首次库仑效率和循环稳定性也得到显著地提升。
 
锂离子电池以其高容量、高电压、高循环稳定性、高能量密度、无环境污染等优异的性能倍受青睐,被称为21世纪的绿色能源和主导电源,具有广泛的民用和国防应用前景,其应用领域不断扩大,不仅已经广泛而成功地应用于各种便携式电子产品,已经开始向动力电池方向发展。目前锂离子电池及其关键材料已成为各国关注的一个科技和产业焦点,也是我国能源领域重点扶持的高新技术产业。锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。天然石墨有着成本低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等基础优势。然而天然石墨的结构缺陷导致首次效率低,循环差。

产品相关推荐