手机电池越来越不耐用?原来是“锂电池”的祸!
来源:宝鄂实业
2019-04-01 18:56
点击量:次
为什么你的手机电池在新的时候持数天,但在一年后的几个小时就只能用一天了?来自《路透社》的报道称,最新研究揭示了锂离子电池如何降解并为更持久的电池铺平道路。
科学家终于揭开了为什么智能手机电池在使用一年左右之后会出现电池寿命迅速衰减的秘密。根据最新调查结果,人们普遍理解的锂离子电池工作原理是不正确的。它们不是带电粒子在电池内部以单一,均匀的方向流动,而是以随机的运动模式来回移动。根据研究人员的说法,这些最新研究成果可用于制造新型电池,使电池持续更长时间并保持电量而不会损坏电池的使用寿命。科学家表示,这可能可以促进于电动汽车的大规模推广,以及改善全球数十亿依靠电池运转的小工具的使用寿命。
这项突破性的研究来自斯坦福大学,麻省理工学院和巴斯大学的研究人员,他们发现我们对锂离子电池(这种类型为我们最喜爱的手机、电脑以及其他小电器提供动力)的理解是不正确的。已知带电粒子通过材料(电解质)在正电极和负电极之间流动,并且该运动产生电荷。然而,之前认为锂是各向异性的,这意味着它在单一方向上流动,颗粒以单一、均匀的方式通过电池。然而,现在已经发现,现实是非常不同的,并且被称为离子的颗粒实际上在电解质中来回循环和流动。这会在电池内部产生随机密集的离子,从而产生大量热量,损坏电池的使用寿命。
结果,电池失去了保持电量的能力,我们经常发现自己更经常地依赖便携式充电宝。
斯坦福大学助理教授William Chueh说:'我们使用了来自加速器的非常强大的X射线,我们正在使用这些X射线来观察这些单独的纳米颗粒。“我们最初的期望是锂只在某些方向上移动。 我们实际看到锂的走向是不符合我们原先理解的方向。该研究利用斯坦福大学SLAC国家加速器实验室的设施,让科学家团队在纳米尺度上研究电池的工作细节。Chueh博士详细阐述了这一现象,并解释说以前的理论没有说明液体如何与固体相互作用。他说:“有点像太空,我们考虑粒子在真空中的表现,但电池内部不是真空的,它充满了液体。”该团队相信他们将能够通过改变运输路径来解决这个缺陷,并在未来开发出更耐用的电池。
那么问题来了,锂离子电池究竟如何工作?
实际上,锂离子电池通过将电子从电池的一端“移动到另一端”来存储和释放能量。我们可以利用来自那些移动电子的能量来为我们工作,比如为钻机提供动力一样。
电池的这两个“端”称为电极。 一个称为阳极,另一个称为阴极。通常,阳极由碳制成,阴极由称为金属氧化物的化合物制成,如氧化钴。
最终的电池成分称为电解质,它位于两个电极之间。在锂离子电池的情况下,电解质是含有锂离子的盐溶液。锂电池也因此得名。将电池放入设备时,带正电的锂离子会被吸引并向阴极移动。一旦阴极被这些离子轰击,阴极就会比阳极充电更多,这会吸引带负电的电子。随着电子开始向阴极移动,我们迫使它们穿过我们的器件并利用电子流向阴极的能量来产生电能。你可以把它想象成水轮,除了在这里不是水流动,而是电子流动。
锂离子电池特别有用,因为它们是可充电的。当电池连接到充电器时,锂离子以与以前相反的方向移动。当它们从阴极移动到阳极时,电池恢复供另一次使用。与其他电池相比,锂离子电池每单位重量也可以产生更多的电力。这意味着锂离子电池可以存储与其他电池相同的功率,但可以在更轻更小的体积中实现。
具体我们是如何为电池充电的呢?
简单来讲,电池由三个部件组成:正电极,负电极和电解质。当电池正在充电时,锂离子从正电极中提取并通过晶体结构和电解质移动到负电极,在那里它们被存储下来。此过程发生得越快,电池充电的速度就越快。制造电池的材料会严重限制该速率。石墨是负极的常用材料,因为它能很好地接受正离子并具有高能量密度。在寻找新的电极材料时,研究人员通常会尝试使颗粒变小。然而,制造具有纳米颗粒的实用电池是困难的,因为它与电解质产生许多棘手的化学反应,因此电池不会持续那么长,而且制造成本昂贵。
在过去的三十年里,锂离子电池,一种将锂离子来回移动到充电和放电的可充电电池,使得小型设备的充电速度更快,持续时间更长。由SLAC的斯坦福材料与能源科学研究所的教员、斯坦福材料科学教授威廉·崔领导的一个国际研究小组今天发表了这些发现。天然材料.“以前,它有点像一个黑匣子,”麻省理工学院教授、这项研究的另一位负责人马丁·巴赞(MartinBazant)说。“你可以看到材料工作得很好,某些添加剂似乎也有帮助,但你不能确切地知道锂离子在这个过程的每一步都会往哪里走。”你只能尝试发展一种理论,并从测量中倒退。有了新的仪器和测量技术,我们开始对这些东西的工作原理有了更严格的科学理解。“爆米花效应任何乘坐过电动巴士、使用过电动工具或使用过无绳真空的人,都有可能从他们研究的电池材料中获益,磷酸铁锂。它也可以用于汽车的启动-停止功能与内燃机和储存风能和太阳能的电网。更好地理解这种材料和其他类似材料可能会导致更快的充电,更长的寿命和更耐用的电池。但直到最近,研究人员还只能猜测能让它发挥作用的机制。当锂离子电池充放电时,锂离子从液体溶液中流入固体储藏室。但是一旦进入固体,锂就会重新排列,有时导致材料分裂成两个不同的相,就像油和水混合在一起时分开一样。这就造成了觉悟所谓的“爆米花效应”。离子聚集在一起,形成热点,从而缩短电池寿命。
在这项研究中,研究人员使用了两种X射线技术来探索锂离子电池的内部工作.在SLAC的斯坦福同步辐射光源(SSRL)上,他们将X射线从磷酸铁锂样品中反射出来,以揭示其原子结构和电子结构,让他们了解锂离子在材料中是如何移动的。在伯克利实验室的高级光源(Als)上,他们使用X射线显微镜放大了这个过程,让他们能够描绘出锂的浓度随时间的变化。上游游以前,研究人员认为磷酸铁锂是一种一维导体,这意味着锂离子只能向一个方向穿过大部分物质,就像鲑鱼游向上游一样。但是,在仔细研究他们的数据时,研究人员注意到,锂在材料表面的运动方向与根据先前模型预测的方向完全不同。就好像有人把一片叶子扔到溪面上,发现水流的方向和游鲑鱼完全不同。当锂离子流入电池的固体电极-这里是六角形切片-锂可以重新排列,导致离子聚集成热点,从而缩短电池寿命。学分:斯坦福大学/三维图形他们与英国巴斯大学(UniversityofBath,UK)化学教授赛义夫·伊斯兰(SaifulIslam)合作,开发该系统的计算机模型和模拟。这些研究表明,锂离子在材料表面向另外两个方向移动,从而使磷酸铁锂成为三维导体。“事实证明,这些额外的途径是有问题的物质,促进爆米花一样的行为,导致它的失败,”觉清说。“如果锂可以在表面移动得更慢,它将使电池更加均匀。这是发展更高性能和更长寿命电池的关键。“电池工程的新前沿-离子电池确实是新的前沿,“他说。“我们已经发现并开发了一些最好的散装材料。我们已经看到锂离子电池为了跟进这项研究,研究人员将继续将建模、仿真和实验结合起来,试图用SLAC的Linac相干光源(LCLS)等设备,在许多不同的长度和时间尺度下,了解有关电池性能的基本问题。在LCLS中,研究人员将能够以每秒数万亿分之一的速度探测单个离子跳跃。“
来自俄罗斯国家研究核子大学(俄罗斯)的研究人员则在延长锂电池使用寿命上有了新突破,他们正在研制含镍-63纳米团簇放射性同位素膜的放射性同位素β-伏打电池。其概念是开发寿命为100年的安全核电池,用于起搏器、微型葡萄糖传感器、动脉血压监测系统、遥控物体和微型机器人以及能够长期工作的独立系统。研究成果发表在杂志上。应用物理信函.研究人员比以往任何时候都更感兴趣的项目,开发纳米技术,以微型化技术设备,主要是纳米电子系统。在创造将纳米电子学和机械元件结合起来的微机电和纳米机电系统方面的最新成就可以使开发微观物理、生物或化学传感器成为可能。然而,微型电池的缺乏为微机电系统和纳米机电系统提供动力,阻碍了这类设备的大规模引进。今天,科学家们正在研究制造微型锂离子电池、太阳能电池板、燃料电池和各种类型的冷凝器的可能性。然而,这些电池仍然太大,无法开发真正的微观和纳米系统。另一种为先进的微机电和纳米机电系统供电的方法是使用放射性同位素电池。无线电同位素或核或原子电池将元稳定元素(原子核)放射性衰变的能量转化为电能。这些元素的质量和体积都有很高的能量密度。持续能量排放的持续时间因核素的选择而异。静音无线电同位素电池可以在没有错误或长期维护的情况下工作。镍-63的独特性能
热电转换被认为是将放射性衰变能量转化为电能的最方便的方法之一。但科学家们也在研究β-伏打电池及其实际应用。通过在微型电池中安装一种发射软β辐射的无线电同位素,可以保护用户和附近的物体免受辐射。因此,这种电池将有广泛的应用。梅菲的研究人员研究了纳米团簇镍膜的电物理性质,并选择了实验的最佳参数,目的是建立一个系统,有效地将镍-63同位素的β衰变能量转化为电能。镍-63同位素是β-伏打过程中最有前途的放射性核素之一。这种软β辐射发射器的半衰期很长,为100.1年。因此,这个独特的元素非常适合为不需要高输出的各种系统供电。
弹性、相对惰性和易于加工的镍是一种有效的金属,就其性能而言.它不必在集装箱内储存和运输。研究人员正试图提高当前系统的效率,将镍-63元素的β衰变能量转化为电能,并寻找替代的物理系统。这种方法很有希望。梅菲的研究人员正在使用新的方法梅菲物理技术计量问题学院的助理教授Pyotr Borisyuk说,研究人员已经开发出一种不寻常的物理系统,可以在纳米结构的镍薄膜中产生二次电子,并大大增强β粒子一连串非弹性碰撞所引起的电流信号。他指出:“相对来说,制作一个实验系统是相对容易的,该系统由密集填充的镍纳米团簇组成,纳米粒子在氧化硅表面的梯度分布,这是一种宽带介电,取决于它们的大小。”
研究人员报告说,纳米颗粒梯度分布的镍-63纳米团簇膜的形成结合了两个重要的过程。首先,有可能在预定的方向上开发出由不同纳米颗粒尺寸决定的固定电位差的涂层。其次,它将把镍-63同位素β衰变的能量转化为电流,而不需要额外的难度来生产半导体系统。新型梯度纳米团簇镍薄膜具有独特的性能,具有热电转换的放射性同位素电源几乎无限制的应用。微型核电池可用于微机电和纳米机电系统、起搏器、微型葡萄糖传感器和动脉血压监测系统,还可用于控制远程物体和微型机器人,以及能够在深海、海底和极北运行很长时间的独立系统。