原来汽车使用了锂电池会有这样的效果!买车的你知道吗?
来源:宝鄂实业
2019-04-02 09:54
点击量:次
车用锂电池是混合动力汽车及电动汽车的动力电池,由于镍氢电池的一些技术性能如能量密度、充放电速度等已经接近到理论极限值,锂电池由于能量密度高、容量大、无记忆性等优点。得到汽车厂商与电池生产厂商的一致认可,目前各国研发的重点是锂离子电池。
目前,大部分车辆采用锂电池,在较低温度时,锂电池的性能会有不同程度下降,表现为充电电流和放电电流变小,电池容量减小等。在高寒情况下,甚至可能出现充不进电的情况。冬季驾驶车辆会使用暖风,增大了车辆电耗,也会减少车辆续驶里程。在冬季使用电动汽车时,出现充电时间变长、车辆续驶里程变短的情况均为正常情况。在使用中,应在车辆停驶后立即充电,利用电池余温,可以使充电更快些;在计划出行时,要充分考虑冬季车辆续驶里程下降。
与铅酸蓄电池相比,锂电池的能量密度高、寿命长、体积小、重量轻等优点,被人们寄予替代铅酸电池的厚望。然而时值今日,锂电池实际替代铅酸电池不到10%,而未来两年内要实现目标看来是非常的艰难。一旦出现锂电池的故障进行返修,时间长则一个星期左右,甚至有的更长,让消费者等待得不耐烦,失去了使用的信心。其原因是,经销商无法维修或更换锂电池内部出现问题的电芯,一定要通过快递运送到制造企业,通过专业设备来进行电池的维修。这是制约锂电池大规模替代铅酸电池的关键之一。
记者从企业申报的公开研发方案中发现,对于300Wh/kg的锂离子动力电池路线,有项目团队选择了高镍正极和纳米硅碳负极。“从最近的进展看,量产电芯能量密度达到300Wh/kg的技术指标可以实现。”李泓说。在近期的新体系电池研究方面,“长续航动力锂电池新材料与新体系研究”研发团队采用的富锂材料为正极,硅碳材料为负极的电芯能量密度达到了348Wh/kg,而以富锂材料为正极、金属锂为负极的电芯比能量达到573Wh/kg;锂硫电池比能量达到600Wh/kg;一次锂空电池比能量达到780Wh/kg。
目前电动车的封装形式无非就是三种,圆柱,方形和软包电池三,那么每种不同封装形式电池的优势劣势又有哪些呢?
其实提到圆柱电池首先想到车型就是特斯拉。当然圆柱电池的应用很广,型号也很丰富,只不过有着特斯拉的大名为前提,我们最熟悉的也就是它的18650和27100两种型号。拿18650举例来说,18代表的是电池的直径,65代表的是电池的高度,0则代表它是圆柱电池,那么27100自然也同理。
18650电池的历史最早可以追溯到1992年,那个时候的18650大部分被应用在数码产品上。所以最主要的优势就是技术成熟,所以18650拥有着更高的良品率,且PACK的成本也能得到有效控制。而且当时18650的能量密度就已经达到了现在宁德时代NCM811的水平,所以对于刚刚起步期的特斯拉来说,18650无疑就成为了最佳的选择。
相较于方形硬壳电池,圆柱电池的空间利用率明显更差,不过好在可以利用圆柱体中间的空隙流通冷却液,也算是“废物利用”的一种。
当然18650的劣势也不能忽视,一个是18650电池采用了金属外壳加上单体电池容量较小,为了满足容量需求只能通过数量的大幅度增加来弥补,那么更大的数量对于BMS电池管理系统要求更高。拿特斯拉上7000节18650来说,目前也只有特斯拉的BMS电池管理系统才能满足如此数量的运算要求。这也是国内没有厂家用18650的原因之一。
不过,目前18650碍于已经发展到极限,随之便诞生了最新的21700,未来特斯拉Model 3便会采用21700电池。相较于18650来说,21700个体体积更大,电池能量密度提升近20%。同时随着技术的发展,21700的成本也明显低于18650。
当然21700也并不完美,真正了解电池的朋友们肯定知道这样一组数据,电池容量每上升10%,电池的循环寿命就会降低20%,充放电倍率就会下降30%-40%,电芯温度会上升20%,所以这意味着需要运算能力更强的BMS电池管理系统来对电池进行有效的控制。就目前国内BMS技术水准来说,想要用上21700电池着实还是需要一段路要走。
可以说方形硬壳电池是目前国际领域应用面最广的电池PACK形式,国内目前主流的蔚来,吉利等一系列新能源车企均采用方形硬壳电池,而国际传统大厂如奥迪,宝马等也均采用方形硬壳电池解决方案。方形硬壳电池应用面广的最主要原因之一就是其供应商也更多且技术难度相对较低,国内绝大多数电池供应商均选择研发方形硬壳电池。比如大名鼎鼎的宁德时代就是主要提供方形硬壳电池的供应商。
方形电池优势除了刚刚说的供应商丰富之外,它的可定制化程度也更高,同时方形的空间利用率相对圆柱电池也更高,但问题在于外层的硬质保护壳会明显增加电池包的整体重量,所以国内类似理想制造ONE都开始以铝材作为外层保护壳,有效的保证轻量化从而提升电池能量密度。
与此同时,方形电池的单体容量和体积都更大,单体数量自然随之降低,那么对于BMS电池管理系统的要求也就更低。目前方形硬壳电机最有代表性就是由宁德时代推出的NCM811,电池密度达到了170kW/kg。
主要劣势就在于可定制自由度高,导致制造工艺不统一,每块电池的差异就会凸显出来。相对于圆柱电池,方形硬壳电池对于冷却系统布置的要求也更高。不过随着国家对于电池标准政策的推出,未来方形电池的差异也会随之减小。
软包电池虽然在汽车市场上应用的并不多,但我们对它并不陌生。我们的手机基本上采用的都是软包电池。
软包电池的外壳采用的是铝塑膜材质,跟采用铝壳的方形和圆柱电池相比来说重量更轻。在同等容量下,软包电池的重量要轻20%,而在同等重量下,软包电池的容量要比铝壳电池高50%。所以软包电池的理论能量密度要更高于方形电池和圆柱电池。
同时,软包电池最大的优势在于可以进行模块化定制,对于电池放置空间的要求并不高,目前许多PHEV车型都采用的是软包电池。
不过由于铝塑膜材质无法对电池本体起到保护作用,所以需要更坚硬的“外壳”来保护,所以在视觉上软包电池还是有硬壳包裹。不过定制的软包电池在形状上有着更多的想象空间,变化更多,不止局限于矩形。可以组成小型电池组放置在后备厢下方,也可以做成T字形布局。目前可查的也就只有日产轩逸纯电和别克的Velite 5了。
由于内部为叠片式的软包电池,一片片软包电池竖直叠放在一起,所以电池热管理系统的布置就需要在每两片电池中间需要加上一层冷却片,冷却液通过注水口注入,填充冷却片上的管路,循环流动并带走热量,再一次提高了成本。
更主要的原因是软包电池的工艺不是很成熟,主要技术都掌握在日韩电池供应商手里。再加上可定制化丰富,所以生产标准和工艺并不统一。更主要的原因国内对于生产铝塑膜外壳的技术较差,目前主要依赖进口,所以成本更高。种种因素导致了软包电池在市场中的应用广泛度较低。