定制热线: 400-678-3556

宝鄂百科

你知道镍氢充电电池吗?镍氢充电电池使用场景有哪些吗?

来源:宝鄂实业    2019-04-06 10:06    点击量:
虽然现在镍氢充电电池使用场景已经不是很多了,但是现在镍氢充电电池的品牌还是不少,价格跨度和质量跨度都很大,因此我就拿手边的电池做一个简单横向评测,看看这些电池之间到底有多大差距。
 
首先看一下测试的电池的合照,品牌包括了淘宝上廉价(虚标)充电电池的常见品牌:力特朗,倍量;比较受大家认可的品牌:倍特力,飞狮,以及最近新出的品牌:比苛。
 
测试用的工具是喜闻乐见的能研BC3100充电器。最大的特点是功能比较齐全,但是测量的准确性只能说一般。
 
容量测试方式是BC3100的ChargeTest,包括了充电-放电-充电三个阶段,最终显示的测试结果是放电阶段放出的电量,单位是MAH。测量时依据电池容量选择适当的电流,基本上都在0.3C左右的充电/放电电流,比如600MAH左右的电池充电电流200MA,1000MAH左右的电池充电电流300MA,2000MAH左右的电池充电电流300MA。
 
内阻测试方式是BC3100的QuickTest,官方说明是以脉冲工作模式,按500MA平均电流,对电池内阻进行定量测量。不过因为BC3100的弹簧等结构限制,内阻的测试值比较不靠谱,只能大概横向参考一下,整体来看测量值应该比实际值偏大。
 
1.常见的入手价格是9.9减5元优惠券,4.9入手。充电/放电电流为200MA。
 
实测容量在600MAH左右
 
内阻100毫欧左右
 
力特朗的这镍氢电池,基本全新,容量虚标超过了50%,内阻倒还不大,不过一致性一般。
 
2.力特朗/LITELONG,5号镍镉电池,标称1300MAH
 
顺手测的同牌子镍镉电池。入手的价格应该也是5元4节。在CD机上用了大概50个循环。有两节已经只有400MAH不到的容量,且测试内阻超过2000毫欧,基本处于报废状态。另外两节容量勉强保持在800MAH左右。充电/放电电流为200MA。
 
右侧两节,平均容量830MAH/26
 
力特朗的老镍镉电池,似乎还是比自家现在的镍氢电池良心一点,50次左右循环后,容量在标称的64%左右,不过一致性还是很糟糕,内阻也比较那啥。
 
3.倍量/Doublepow,5号镍氢电池,标称780MAH
 
常见的入手价格是9.9减3元优惠券,6.9入手。充电/放电电流为200MA。
1 锂电池工作过程
 
如上图所示,锂离子电池充放电过程的物理模型。蓝色箭头表示充电,红色箭头表示放电。蓝绿相间的晶格结构为正极材料,黑色层状为负极材料。目前主流的锂离子电池,一般按照正极材料类型命名,磷酸铁锂、锰酸锂等即为正极材料的类型;负极为石墨材质;正极集流体铝箔,负极集流体为铜箔。
 
下面以放电为例,描述一下锂电池放电时的物理过程。
 
外部负载接通后,在电池本体以外形成电流通路。由于正负极之间存在电势差,负极附近的电子首先通集流体和外部导线向正极移动;负极周围的锂离子浓度升高。从负极经过外部电路到达正极的电子,与正极附近的锂离子结合,嵌入正极材料,正极附近的锂离子浓度降低。正负极之间的锂离子浓度差形成。这样,就完成了电池放电过程的第一推动。
 
随着锂离子在离子浓度差的推动下离开负极,负极附近出现空缺,负极材料内的锂离子,从负极脱嵌,进入电解液中;大量锂离子从电解液中穿越隔膜,自负极向正极移动。同时,原本与锂离子以结合形态存在的电子,则通过外部电路去往正极。电池开始了按照负载的需求进行的放电过程。
 
充电是放电的逆过程,同样的脱嵌,移动,嵌入几个阶段,只是推动过程发展的动力来自于充电机,而离子的运动方向是自正极向负极运动。这里不再赘述。
 
2 锂电池内阻构成
 
了解了锂电池的工作过程,那么过程中的阻碍因素,便形成了锂电池的内阻。
 
电池的内阻包括欧姆电阻和极化电阻。在温度恒定的条件下,欧姆电阻基本稳定不变,而极化电阻会随着影响极化水平的因素变动。
 
欧姆电阻主要由电极材料、电解液、隔膜电阻及集流体、极耳的连接等各部分零件的接触电阻组成,与电池的尺寸、结构、连接方式等有关。
 
极化电阻,加载电流的瞬间才产生的电阻,是电池内部各种阻碍带电离子抵达目的地的趋势总和。极化电阻可以分为电化学极化和浓差极化两部分。电化学极化是电解液中电化学反应的速度无法达到电子的移动速度造成的;浓差极化,是锂离子嵌入脱出正负极材料并在材料中移动的速度小于锂离子向电极集结的速度造成的。
 
3 锂电池内阻影响因素
 
从上面的过程可以推演出电池内阻的影响因素。
 
3.1 外加因素
 
温度,环境温度是各种电阻的重要影响因素,具体到锂电池,是由于温度影响电化学材料的活性,直接决定电化学反应的速度和离子运动的速度。
 
电流或者说负载的需求,一方面电流的大小与极化内阻有直接关联。大体趋势是电流越大,极化内阻越大。另一方面,电流的热效应,对电化学材质的活性产生影响。
 
3.2 电池自身因素
 
正极材料,负极材料,锂离子嵌入和脱嵌的难易程度,决定了材料内阻的大小,是浓差极化电阻的一部分。
 
电解液,锂离子在电解液中的移动速率,受电解液导电率的影响,是电化学极化电阻的主要构成部分。
 
隔膜,隔膜自身电阻,直接构成欧姆内阻的一部分,同时其对锂离子移动速率的阻碍,又形成了一部分电化学极化电阻。
 
集流体电阻,部件连接电阻,是电池欧姆内阻的主要组成部分。
 
工艺水平,极片制作工艺、涂料是否均匀、压实密度如何,这些电芯加工过程中工艺水平的高低,也会对极化内阻造成直接影响。
 
 
4 锂电池内阻测量
 
锂电池内阻测量方法,一般分为直流测量方法和交流测量方法两种。
 
4.1 直流内阻测量方法
 
使用电流源,给电池施加一个短时脉冲,测量其端电压与开路电压的差。用这个差值除以测试电流即认为是电池的直流内阻。
 
锂电池极化内阻会受到加载电流大小的影响,为了尽量避开这个因素,直流测量内阻方法的通电时间比较短,并且加载电流比较大。
 
理论上,测量电流越小,越不会引起极化反应,减少极化电阻的干扰。但由于电池内阻本身很小,都是毫欧量级,电流过小,电压检测仪器受限于测量精度,无法排除测量误差对结果的干扰。因此,人们权衡仪器精度和极化内阻的影响,找到一个平衡二者关系的测量电流值。
 
对于普通电池单体来说,测量电流一般在5C-10C左右,很大。随着电芯容量的增大,或者多个电芯并联,其内阻是减小的,因此,如果没有仪器精度的提高,测量电流是很难降下来的。
 
4.2 交流内阻测量方法
 
给电池加载一个幅值较小的交流输入作为激励,监测其端电压的响应情况。使用特定程序对数据进行分析,得出电池的交流内阻。分析得到的阻值,只与电池本身特性有关,与采用的激励信号大小无关。
 
 
 
由于电池电容特性的存在,激励信号的频率不同,其测量得到的阻值也不同。软件分析的结果可以用一组复数表示,横轴为实部,纵轴为虚部。这样,就形成了一个图谱,所谓交流阻抗谱,如上图所示。
 
通过进一步的数据分析,人们可以从交流阻抗谱中得到这只电池的欧姆电阻,SEI膜的扩散电阻,SEI膜的电容值,电荷在电解液中传递的等效电容值以及电荷在电解液中扩散电阻值,进而绘制出电池等效模型,进行电池性能的进一步研究。一种等效电池模型,如下图所示。