定制热线: 400-678-3556

宝鄂百科

最近比较火的钙钛矿电池都能革锂电池的命??

来源:宝鄂实业    2019-04-09 12:03    点击量:
近一年来,钙钛矿型电池已经受到重量级期刊的广泛报道,媒体转载也是铺天盖地。长江后浪推前浪,09年横空出世的年轻电池形态有没有潜力把前辈们拍在沙滩上?
 
 
 
  鉴于这个名词容易引起误解,先一起来看看庐山真面目–钙钛矿(Perovskite)泛指一类陶瓷氧化物,由于存在于矿石中的钛酸钙(CaTiO3)化合物最早被发现,因此而得名。后来钙钛矿成为固体物理里面对这一类晶格类型的称呼,其分子通式为ABX3,A,B,X可以代表不同元素。从构成来看,它们是一系列无机化合物。
 
 
 
    而近来大热的新型电池也被称做钙钛矿型太阳能电池(Perovskite-Based Solar Cells),并不是因为采用了上面提到的陶瓷氧化物作为材料,恰恰相反,这类电池的活性材料是有机铅碘化合物(甲胺铅碘,化学式CH3NH3PbI3)。那为什么还以此命名呢?因为甲胺铅碘可以形成具有钙钛矿结构的晶体,有机短链、铅离子以及碘离子分别占据晶格的A、B、X位置,由此构成三维结构。为了方便起见,大概就约定俗成为钙钛矿型(或钙钛矿结构)太阳能电池。
 
 
 
 
 
  但是有的媒体报道的时候,因为不了解缘由,直接说成钙钛矿太阳能电池,甚至引出钛酸钙(CaTiO3)来分析资源储量,误人不浅。退一万步说,如果真用CaTiO3来做电池,它的能带宽度对应于387纳米的光线,意味着不可能吸收利用任何可见光,所以当做活性材料是没有意义的,用做传导材料倒是不无可能。鲸鱼不是鱼,龙猫不是猫,此钙钛矿并非彼钙钛矿,现在我们可以清楚的分辨这一点了。
 
 
 
钙钛矿型太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,即是将染料敏化太阳能电池中的染料作了相应的替换。在这种钙钛矿结构(,图1)中,A一般为甲胺基,和也有报道;B多为金属Pb原子,金属Sn也有少量报道;X为Cl、Br、I等卤素单原子或混合原子。目前在高效钙钛矿型太阳能电池中,最常见的钙钛矿材料是碘化铅甲胺(),它的带隙约为1.5 eV。
 
 
 钙钛矿型晶格结构
 
 
钙钛矿太阳能电池的结构
如图示,钙钛矿太阳能电池由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。
 
 
其中,电子传输层一般为致密的纳米颗粒,以阻止钙钛矿层的载流子与FTO中的载流子复合。通过调控的形貌、元素掺杂或使用其它的n型半导体材料如ZnO等手段来改善该层的导电能力,以提高电池的性能。目前报道的最高效率(~19.3%)的电池使用的即是钇掺杂的。
 
 
钙钛矿光敏层,多数情况下就是一层有机金属卤化物半导体薄膜。也有人使用的是有机金属卤化物填充的介孔结构(、和骨架),或者两者都存在,但没有证据表明这种结构有助于电池性能的提高。
 
 
空穴传输层,在染料敏化太阳能电池中,该层多为液态电解质。由于在液态电解质中不稳定,使得电池稳定性差,这也是早期的钙钛矿电池的主要问题。后来,Grätzel 等采用了如spiro-OMeTAD, 
PEDOT:PSS等固态空穴传输材料,电池效率得到了极大提高,并具有良好的稳定性。
 
 
特别地,钙钛矿还可以同时作为吸光和电子传输材料或者同时作为吸光和空穴传输材料。这样,就可以制造不含HTM或ETM的钙钛矿太阳能电池。
 
钙钛矿太阳能电池的结构及其载流子传输机制
 
 
钙钛矿太阳能电池中的物理过程
 
 
在接受太阳光照射时,钙钛矿层首先吸收光子产生电子-空穴对。由于钙钛矿材激子束缚能的差异,这些载流子或者成为自由载流子,或者形成激子。而且,因为这些钙钛矿材料往往具有较低的载流子复合几率和较高的载流子迁移率,所以载流子的扩散距离和寿命较长。例如,的载流子扩散长度至少为100nm,而的扩散长度甚至大于。这就是钙钛矿太阳能电池优异性能的来源。
 
 
然后,这些未复合的电子和空穴分别别电子传输层和空穴传输层收集,即电子从钙钛矿层传输到等电子传输层,最后被FTO收集;空穴从钙钛矿层传输到空穴传输层,最后被金属电极收集,如图2所示。当然,这些过程中总不免伴随着一些使载流子的损失,如电子传输层的电子与钙钛矿层空穴的可逆复合、电子传输层的电子与空穴传输层的空穴的复合(钙钛矿层不致密的情况)、钙钛矿层的电子与空穴传输层的空穴的复合。要提高电池的整体性能,这些载流子的损失应该降到最低。
 
 
最后,通过连接FTO和金属电极的电路而产生光电流。
 
 
钙钛矿结构太阳能电池属于哪个种类?
 
 
 
  有机铅碘化合物晶体具有独特的光电性能,它的八面体体系有利于电子和空穴的传输,使得该类材料具有优异的载流子传输特性。而且还有合适的能带结构,较好的光吸收性能,能够吸收几乎全部范围的可见光用于光电转换。以钙钛矿型铅碘化合物为活性吸光材料的薄膜电池,普遍来说两边还分别需要电子传输层(一般为二氧化钛TiO2)和空穴传输层来辅助导出电流。因此从结构来看,个人觉得可把它归为广义敏化太阳能电池的一种。但是学术上对它的工作机理还存在敏化机制和异质结机制的争论。
 
 
 
  钙钛矿型电池是在09年左右报道出现,属于新生代“05后”。来看看“05后”新型电池的四大杀器:
 
 
 
  1、效率值及其潜力
 
 
 
 
 
  钙钛矿型电池在09年横空出世之后,其光电转化效率在近5年内从3.8%迅速提高到15.6%,被SCIENCE评选为2013年十大科学突破之一。效率值高于非晶硅电池实验室值,更是甩开它的近亲–染料敏化和有机太阳能电池几条街的距离。最重要的是随着电池工艺的进一步发展和成熟,暂时还看不到它效率值的天花板。
 
 
 
 2、制备条件和成本
 
 
 
  能源消耗和生产成本对当今光伏产业的发展尤为重要,制备条件温和、电池结构较简单是铅碘化合物电池的优点。制备方法有液相、气相和气-固沉积等,铅碘化合物容易自组装形成晶体,各层材料的制备温度可以不超过150度,低温意味着低能耗。另外每层都可做成平面型结构(Planar Structure),可以避免制备特殊纳米结构的繁杂性和不确定性(有一篇NATURE作者特别指出,此类高效率电池并不需要纳米结构的材料),符合大量生产的现实要求。
 
 
 
  
 
3、建筑一体化潜力
 
 
 
  在集中电站和屋顶发电之外,光伏的建筑一体化已经是箭在弦上。钙钛矿型电池属于薄膜电池,目前主要就是沉积在玻璃上,还可以通过控制各层材料的厚度和材质来实现不同程度的透明度,当然也会降低效率值,不过对这类应用是值得尝试的。例如牛津大学的实验室已经可以做出半透光(灰褐色)的电池。如果这种将采光与发电融为一体的太阳能电池开发顺利,有望成为高楼大厦幕墙装饰、车辆有色玻璃贴膜等的替代品,这对于拓展太阳能电池的更广泛应用意义重大。
 
 
 
  4、原料储量和毒性
 
 
 
  大家可能注意到材料里含有铅,不过铅跟其他类型电池含有的砷、镓、碲、镉相比就是小巫见大巫了,事实上固化封装的各类太阳能电池都很安全,不会危害日常生活。再就是自然储量够不够商业化生产?铅早已经在商业化产品中大量应用了,这自然不会是问题。举个栗子:假设将来钙钛矿型太阳能电池年产能达到不可能的1000GW(吉瓦,一吉瓦等于一百万千瓦),那么需要的铅也不到一万吨,相比之下,铅酸蓄电池每年消耗的铅高达4百万吨。而其他元素和材料也都比较常见,不会成为供应链的短板。
 
  
 
         5、最新研究报道
 
华中科技大学武汉光电国家实验室陈炜副教授在访问日本国立物质与材料研究院(NIMS)期间,在钙钛矿薄膜太阳能电池研究领域取得重要进展。基于P-i-N反式平面结构、通过优化界面工程,全面解决了钙钛矿太阳能电池高效率、迟滞现象、器件稳定性、大面积器件均匀性和一致性等重要问题,首次在国际权威太阳能电池认证机构——“日本产业技术综合研究所(AIST) ”认证成功大面积 (>1 cm2)钙钛矿太阳能电池国际最高效率(15%),首次将大面积钙钛矿太阳能电池写进权威太阳能效率记录表《Solar cell efficiencytables (Version 46)》。这一最新成果的相关论文已于2015年11月在 Science 上线发表,论文通讯作者为NIMS韩礼元教授和瑞士联邦理工学院Michael Gratzel教授。
 
 
 
太阳能取之不尽、用之不绝,规模化利用清洁、可再生的太阳能对于优化能源消费结构、减少环境污染和全球温室效应的意义十分重大。现在已经市场化的光伏技术包括第一代晶体硅太阳能电池、第二代CIGS、CdTe薄膜太阳能电池,尽管每年以30%的速度高速成长,但其总装机发电量仍不足全球总能耗的1%。寻找新一代更廉价、更高效的光伏技术是太阳能利用的一个永恒命题,关系到未来太阳能在多大程度上取代化石能源。
 
 
 
钙钛矿太阳能电池是最近3年才出现的光伏技术,其效率记录提升的速度十分迅猛。目前韩国KRICT报道的钙钛矿太阳能电池效率达到20.1%,远远超过其他类型的新概念太阳能电池,几乎与发展数十年的CIGS等薄膜太阳能电池相当,而且将来仍会有很大的提升空间。见美国可再生能源实验室(NREL)编纂的最新效率记录表。