定制热线: 400-678-3556

宝鄂百科

锂电池未来几年的发展前景如何?

来源:宝鄂实业    2019-04-20 23:05    点击量:
通过这些数据可以看得出来。锂电池,它的应用领域和占比都是在不断变化的。未来的前景重点应用应该集中在电动工具,新能源汽车,轻型电动车和能源存储系统等等。这些领域内的产业规模,在未来几年应该会保持成倍的增长趋势。
    一、锂电池的优势导致它不断增长新能源汽车的大力发展,也带动了锂电池行业的深度发展,动力锂电池在电池比例中不断升高。因为锂电池和传统电池相比优势比较大,他们在相同体积下锂电池容量更大,生产使用回收过程都更加的绿色环保。
    二、新能源汽车数量的增加,导致锂电池供不应求。在2017年,中国的电动汽车产量达到65万辆。到2018年,这个数据仍然在持续上涨。这一结果直接导致锂电池需求猛增。尤其是动力锂电池,市场潜力巨大。三、新技术的整合利用,提升利用率。随着新技术的开发与研究。石墨烯纳米材料等一些先进的材料设备不断完善和锂离子电池的研发加速融合。它的应用领域,也越来越广泛日前在深圳市捷晶能源科技有限公司的提议、倡导和组织下,在中国环境报社固废产业服务平台大力支持下,2019年1月12日在深圳成功举办了“2019捷晶能源危废技术高峰论坛”。
此次论坛上,与会专家、企业代表以“聚势?领变革合作?赢未来”为主题,以行业政策走向、技术创新、关键技术设备应用等为主要内容,开展了丰富深入的交流与探讨。
图:深圳市捷晶能源科技有限公司总经理代超主持论道(左一),嘉宾依次为:江西华赛新材料有限公司副总经理余伯福(左二)、江西环锂新能源科技有限公司董事总经理何君韦(左三)、上饶市鼎鑫金属化工有限公司总经理张永岳(右一)
基于新能源锂电池行业的快速发展以及面临多种不确定因素,此次论坛“高峰论道”,多位行业企业代表就行业技术及产品回收等问题进行了交流讨论。
锂电池回收行业:2019年或持续低迷
会议发起人、深圳市捷晶能源科技有限公司总经理代超表示,由于国家的补贴政策以及新能源政策等支持,新能源电池行业蓬勃飞速发展。但是2018年的一些外部形势,使行业受到了一定影响。比如沃特码公司的破产、银隆公司的产品线收缩,各种镍、钴、锂盐产品价格下降等等,都对锂电池回收市场造成影响。
据了解,目前锂电池三元材料回收市场竞争也较为激烈,格林美、普邦、华友等都在布局三元回收版块,那么目前的市场容量,是否会存在过饱和的情况?各家从业企业如何在激烈的市场竞争中突围出来?
上饶市鼎鑫金属化工有限公司总经理张永岳认为,锂电回收行业发展在2017年非常迅速,从2016到2018年,不管是电动汽车领域,还是正极材料包及电池回收领域,至少都是上万亿的资金规模,行业整体发展较为迅猛。
2016年,行业所有材料的价格都开始飞涨2018年中美贸易战开始,整个行业都是雪崩式的出现了一个反转。三大产品——手机、汽车、房子,都要用到锂电回收,从消费电池到动力电池到储能设备,在我们中美贸易战的时候,就是针对我们这些产品、针对我们的下游来打,导致整个行业出现了很大规模的动荡。尤其是2018年的第三、第四季度最为惨烈。
与其他类型的电池相比,锂离子电池发热较大,其气体排放,爆炸、起火的风险更高。这些风险还远远没有被充分理解,而通过研究和事故分析是有可能提高系统安全性的。风险的类型和严重程度取决于不同的应用和电池系统的大小。由于电池和模块故障的可传播性,随着电池系统尺寸的增加,故障后果可能会显著增加。
 
锂离子电池包含所有必要的火焰三角形的三个部分; 热/点火器,可燃物质和氧气。此外,一旦过热,典型地从70℃~120℃开始,锂离子电池开始臌胀并能够释放气体(排气)。排出的气体易燃且有毒。如果温度足够高,达到的150℃~200℃,电池自生热进入加速阶段,热失控(TR)可能发生。术语热失控的起始温度是指放热反应开始并最终导致热失控的温度,而热失控温度是指热失控的非常快速的温度升高。热失控通常伴随着大量烟气释放,可能伴随电池箱破损,燃烧或瓦斯爆炸。因此热失控过程存在两种主要类型的爆炸:电池壳体爆炸和与空气混合的可燃排放气体的气体爆炸。圆柱形和硬质方形电池可以产生高内部压力,因此设计为通过内置电池安全阀释放气体,但是如果排气故障,电池内部可能会产生极大的压力,导致电池壳体爆炸。有两种这样的爆炸形式,一种是电池内部的爆炸,另一种是封闭或半封闭外壳中积累的可燃气体与空气的混合气体延迟点燃引起的爆炸。可燃气体爆炸的后果可能比电池爆炸的后果严重得多。
 
排出的气体可以包含溶剂蒸发和分解生成的产物,例如CO,CO2,H2,CH4。除CO外,还可以释放大量不同的有毒化合物,包括氟化物气体。氟化氢(HF)已经引起了最多的关注,是非常有毒的气体 。很少有已经发表的研究报告说明商业锂离子电池滥用期间释放的HF量,和电解质燃烧释放的HF的量 。电池中的氟来自锂盐,如LiPF 6,而且还来自电极粘合剂,如PVdF,电极材料和涂层,例如氟磷酸盐和AlF3阴极涂层,以及含氟添加剂如阻燃剂。电池安全性非常复杂,整体观点非常重要,例如通过引入AlF3涂层,热失控发生的风险可以降低,而有毒氟化物气体排放和气体爆炸的风险可能会增加。因此整体安全难以评估,这取决于电池的大小和情况,并且对一个参数的改进实际上可能会恶化整体安全性。
 
有许多不同类型的滥用测试,常见的是外部加热。有几种类型的外部加热方法适用于锂离子电池,例如在烘箱中加热,通过IR辐射加热,加热膜或其他加热器,在密闭腔室内使用加热速率热量计(ARC)或其他类型仪器。到目前为止,针对新电芯的研究很多,但很少有研究衰老对安全性的影响的。元件的性能在老化过程中可能会发生变化,但实际要求却是,在整个电池寿命期间都需要具有高电池安全等级。老化通常以日历和周期老化的形式出现。为了缩短测试时间,存储和循环所述电芯通常在升高的温度下进行,例如35 - 55°C,但是,在这些温度下的测量结果与在环境温度下使用时所获得的数据并不完全相同,例如20℃,因为可能发生其他方面的分解反应。锂离子电池的老化过程是非线性的和复杂的 ,还没有被完全理解。例如,在老化期间,固体电解质界面(SEI)层发生变化,SEI在热失控的早期阶段发挥重要作用。有研究利用量热技术描述了SEI这种改性的演变,利用XRD,XPS,SEM和拉曼光谱分析表面,描述了热失控的三个主要阶段。
 
有试验通过ARC测试研究了日历老化的索尼18650电池的热稳定性,发现老化电芯开始放热温度高达70°C,说明老化电芯显示出更高的放热开始温度。
 
另外有人研究了经过10次和200次循环后0.75 Ah非商用石墨/锂钴氧化物(LCO)锂离子电池,发现在针刺滥用试验中,200次循环后热安全性下降。
 
有人研究了在60℃下储存至36周的2 Ah石墨/ LMO-NMC Li离子18650电池,在ARC测试中发现36周龄电芯的放热反应和热失控起始温度较低。
 
相反,另外有人研究了在55°C储存10到90天的4.6 Ah石墨/ LMO锂离子电池,发现自热和热失控的起始温度随着老化的增加而增加。
 
另一个试验,研究了1.5 Ah石墨/ LMO-NMC高功率Li离子18650电池在ARC测试中对循环老化的热响应的影响,发现第一个放热响应以及热失控的开始温度显著降低,起始温度低至30.7℃,并且在- 10°C进行的1C循环的电池的阳极上也发现镀锂现象。
 
一组人研究了石墨/ NMC 18650新的和循环老化电芯在0℃至70%健康状态(SOH)下使用1C的ARC测试的安全性。老化电芯热安全性降低,其具有低至30℃的自热起始温度以及较早的热失控。同一作者还通过针刺滥用试验研究了安全性,并发现老化电芯具有延迟但更剧烈的热失控。一般情况下,低温循环阳极镀锂和以过高的电流充电,都会提高锂离子电池的风险性。
 
本次研究涉及的工作中,研究了在20°C和60°C下储存的未循环电芯以及100,200或300个C/2深度循环电芯的锂离子电芯安全性,所有电芯的类型相同,一种商用6.8 Ah石墨/ LiCoO 2 锂离子电池。通过外部加热(烘箱)形式的滥用测试评估安全性,同时进行FTIR气体测量。进行一次ARC测试以比较安全评估方法。