你了解锂电池表面的锂膜与电解液的微观结构吗?
来源:宝鄂实业
2019-04-21 13:20
点击量:次
以及它们的交界面都会发生明显变化,导致电池内部暂不活跃,漏电流减少。所以再次充电后,手机的待电时间会增加。
目前,手机电池普遍选用锂电池,理论上来说,一块锂电池的充电次数约6000次。如果充电次数多了,分子的热运动会使其内部分子排列微观结构逐渐被破坏,存储电荷效率会渐渐降低。
“冷冻的过程容易破坏电池原来的内部结构,短时间内或许可以增加充载电荷的能力,但长期使用未必有效。”叶教授说,电池内的微观结构一旦被破坏,再要完全恢复过来是不可能的,长期使用这种方法会加速手机电池的损耗。
手机电池大可不必费力修复
手机电池的修复方法还流传有多个版本。比如有一种说法,利用橡皮擦擦拭手机电池与手机接触的金属接触面,可以让手机电池的使用状况更为良好。
这种修复方式被业内人士所认可。“事实上,不论是橡皮擦还是其他材质的清洁工具,只要能够去除电池金属接头的生锈物质,都有助于充电状况及电力的持久。”手机卖场一位负责手机维修的技术人员说。
联通手机维修中心的董先生说,面对需要修复的手机电池,多数时候会采用深度放电的方式。“通常而言,手机电池充电时间越来越短,充满的电越来越不经用,都是因为电池的记忆效应。”也就是说,手机在一次次充放电的过程中,电池内部会累计一部分释放不了的电能。随着使用时间的增长,不能发挥效能的电能比重会越来越大,这就是所谓的记忆效应。从一块电池来说,记忆效应越小,有效电量的空间就越大。
对手机进行深度放电,就是通过耗尽内部电能,来达到更深程度的再充电,这需要采用一些非常规的方法。董先生举了个例子,用特定的装置连接手机与一个低电压小灯泡,电池内部的电量会传输到小灯泡上,直到全部都放光。“手机需要通过较低的电压慢慢耗尽电能。正常情况下,手机接通后若低于3.6伏的额定电压,就会自动关机。”放完电后,再次充电的手机电池可以使用更长时间。
1
正极材料的安全隐患
当锂离子电池使用不当时,导致电池内部温度的升高,使正极材料会发生活性物质的分解和电解液的氧化。同时,这两种反应能够产生大量的热,从而造成电池温度的进一步上升。不同的脱锂状态对活性物质晶格转变、分解温度和电池的热稳定性影响相差很大。
2
负极材料的安全隐患
早期使用的负极材料是金属锂,组装的电池在多次充放电后易产生锂枝晶,进而刺破隔膜,导致电池短路、漏液甚至发生爆炸。嵌锂化合物能够有效避免锂枝晶的产生,大大提高锂离子电池的安全性。随着温度的升高,嵌锂状态下的碳负极首先与电解液发生放热反应。相同的充放电条件下,电解液与嵌锂人造石墨反应的放热速率远大于与嵌锂的中间相碳微球、碳纤维、焦碳等的反应放热速率。
3
隔膜与电解液的安全隐患
锂离子电池的电解液为锂盐与有机溶剂的混合溶液,其中商用的锂盐为六氟磷酸锂,该材料在高温下易发生热分解,并与微量的水以及有机溶剂之间进行热化学反应,降低电解液的热稳定性。电解液有机溶剂为碳酸酯类,这类溶剂沸点、闪点较低,在高温下容易与锂盐释放PF5的反应,易被氧化。
4
制造工艺中的安全隐患
锂离子电池在制造过程中,电极制造、电池装配等过程都会对电池的安全性产生影响。如正极和负极混料、涂布、辊压、裁片或冲切、组装、加注电解液的量、封口、化成等诸道工序的质量控制,无一不影响电池的性能和安全性。浆料的均匀度决定了活性物质在电极上分布的均匀性,从而影响电池的安全性。浆料细度太大,电池充放电时会出现负极材料膨胀与收缩比较大的变化,可能出现金属锂的析出;浆料细度太小会导致电池内阻过大。涂布加热温度过低或烘干时间不足会使溶剂残留,粘结剂部分溶解,造成部分活性物质容易剥离;温度过高可能造成粘结剂炭化,活性物质脱落造成电池内部短路。
5
电池使用过程中的安全隐患
锂离子电池在使用过程中应该尽可能减少过充电或者过放电,特别对于单体容量高的电池,因热扰动可能会引发一系列放热副反应,导致安全性问题。
三
锂离子电池安全检测指标
锂离子电池生产出来后,在到达消费者手中之前,还需要进行一系列检测,以尽量保证电池的安全性,降低安全隐患。
1、挤压测试:将充满电的电池放在一个平面上,由油压缸施与13±1KN的挤压力,由直径为32mm的钢棒平面挤压电池,一旦挤压压力到达最大停止挤压,电池不起火,不爆炸即可。
2、撞击测试:电池充满电后,放置在一个平面上,将直径15.8mm的钢柱垂直置于电池中心,将重量9.1kg的重物从610mm的高度自由落到电池上方的钢柱上。电池不起火、不爆炸即可。
3、过充测试:将电池用1C充满电,按照3C过充10V进行过充试验,当电池过充时电压上升到一定电压时稳定一段时间,接近一定时间时电池电压快速上升,当上升至一定限度时,电池高帽拉断,电压跌至0V,电池没有起火、爆炸即可。
4、短路测试:将电池充满电后用电阻不大于50mΩ的导线将电池正负极短路,测试电池的表面温度变化,电池表面最高温度为140℃,电池盖帽拉开,电池不起火、不爆炸。
5、针刺测试:将充满电的电池放在一个平面上,用直径3mm的钢针沿径向将电池刺穿。测试电池不起火、不爆炸即可。
6、温度循环测试:锂离子电池温度循环试验是用来模拟锂离子电池在运输或贮存过程中,反复暴露在低温和高温环境下,锂离子电池的安全性,试验是利用迅速和极端的温度变化进行的。试验后样品应不起火、不爆炸、不漏液。