你知道电动车电池最长寿命是几年吗?
来源:宝鄂实业
2019-04-24 15:55
点击量:次
不管是在道路拥挤的地段还是平时上下班出行,现在大部分上班族就算买了车也会选择骑电动车,原因不用多说大家也知道,现在开车出门不仅难找停车位而且碰到堵车也是常有的事,所以大家都选择骑电动车出门。可是电动车毕竟是依靠电池发力,路程远的情况下骑电动车还是不可行的,但是现在不少电动车车主会备上一个储存电量的电瓶,这样就可以解决路程远的问题了。但是对于电动车电池最长寿命是几年?专业人员:锂电池好用可是没人用!下面小编就带大家来了解一下电动车电池。
其实电动车的结构与汽车相比要简单得多,电动车主要由电瓶和控制器以及一些零部件组成,如此简单方便的电动车在价格上也很亲民,便宜的只要一两千块,贵一点的也就三四千,不少家里有车的朋友都后悔买车了吧?虽然价格便宜,但是一辆电动车在没有出现事故的情况下,正常来说使用三五年是没有问题的,但是我们在购买电动车的时候一定要注意电动车电瓶质量和品牌。为什么要注意电动车电瓶的质量和品牌而不是注意电动车的质量和品牌呢?要知道一辆电动车最值钱的地方就是电瓶了,很多小偷对电动车的电瓶可是虎视眈眈,所以大家在停车时一定要停在有专人看守的停车场,不然电瓶被小偷偷走可是很不划算的。
要知道偷电动车电瓶对于小偷来说根本不算难事,但是为什么这些小偷不把整辆车偷走只是偷一个电瓶呢?在这里小编告诉大家:一辆便宜的电动车还不如一个大品牌的电瓶来得贵,你说小偷为什么要花费时间在整辆电动车上呢?说到电动车电瓶,你们知道现在电动车上的电瓶大多都是铅酸电瓶吗?这种电瓶价格不高,所以大部分消费者会购买铅酸电瓶的电动车。还有一种锂电池,这种电池在价格上比铅酸电池更贵,但是贵有贵的好处,下面小编重点来和大家说说锂电池如此好用为什么没人用。
第一:由于锂电池售价比较高,对于普通上班族来说买辆铅酸电池的电动车就足够了;第二:由于锂电池刚开发出来没几年,在各个方面做得不够完善,虽然使用起来没有什么大问题,但是也存在一些安全隐患。第三:大部分店家觉得锂电池进价太高,这在市场上完全没有铅酸电池的电动车好卖,所以店家推荐消费者购买铅酸电池的电动车。
觉得只要锂电池把技术方面的问题提升上来,同时把价格定得再亲民一点,那么大部分消费者就会接受锂电池的电动车吧。毕竟现在消费者追求的都是性价比,受到消费者喜爱的产品才能走得更长远。最后小编想问问各位网友:你们购买的电动车是哪种电池呢?
高性能负极材料的研究成为当前锂离子动力电池最为活跃的板块之一。本文对石墨烯、钛酸锂、硅碳负极材料等各种负极材料特性以及未来展望做了介绍。
当前世界各国都在积极开发新能源产业,锂离子电池产业也是其中之一。由于锂离子电池具有高容量、高电压平台、安全性能好、循环寿命长、绿色无污染等重要优点,使其在便携式电子3C设备、纯电动汽车、船舶、空间技术、生物医学工程、物流、国防军工等多方面得到了广泛应用,成为近10年及未来一段时间广为关注的新能源领域研究热点。目前大力发展新能源汽车行业已经上升到国家战略高度,我国已提出了电动车发展方向、主要任务、战略目标及相关配套政策措施,新能源汽车行业发展正面临巨大的历史机遇;因而锂离子电池中不可缺失的负极材料,同样拥有不可估量的光明前景。负极材料作为新能源汽车动力电池的核心材料之一,对新能源汽车的最终性能起着至关重要的作用。动力锂离子电池的性能优化需要依托于负极材料技术的创新突破,因此高性能负极材料的研究成为当前锂离子动力电池最为活跃的板块之一。本文从锂离子电池工作原理、负极材料分类及发展、未来展望等3个方面介绍。
锂离子电池是一种可充电二次电池,主要由正极、负极、电解液、隔膜和集流体等主要5部分组成。正负极材料主要功能是使锂离子较自由的脱出/嵌入,从而实现充放电功能。锂离子电池工作原理如下图1所示,充电过程中,锂离子从正极材料中脱出,经过电解液嵌入到对应的负极材料中,同时电子从正极流出经过外电路流向负极;锂电池放电时,锂离子从负极脱出,经过电解液重新嵌入到正极材料中,同时电子经过外电路从负极流向正极。因而锂电池的充放电过程本质就是锂离子在正负极之间的脱锂和嵌锂的过程。在理想状态下,认为在正负极材料之间的脱锂和嵌锂过程不会引起正负极材料结构的损坏,可以视作是充放电过程可逆。
锂电池负极材料目前处于锂离子电池产业中最关键的环节。按锂离子电池成本比例,负极材料占比锂电池总成本的25%~28%。相对于锂电池正极材料,负极材料的研究方兴未艾。较为理想的负极材料最少要具备以下7点条件:化学电位较低,与正极材料形成较大的电势差,从而得到高功率电池;应具备较高的循环比容量;在负极材料中Li+应该容易嵌入和脱出,具有较高的库伦效率,以至于在Li+脱嵌过程中可以有较稳定的充放电电压;有良好的电子电导率和离子电导率;有良好的稳定性,对电解质有一定的兼容性;对于材料的来源应该资源丰富,价格低廉,制造工艺简单;安全、绿色无污染。
符合以上各个条件的负极材料目前基本不存在,因此研究能量密度高,安全性能好,价格便宜,材料易得的新型负极材料成为当务之急,这也是现阶段锂电池研究领域的热门课题。现阶段,锂离子电池负极材料主要有碳材料、过渡金属的氧化物、合金材料、硅材料及其他含硅材料,含锂的过渡金属的氮化物以及钛酸锂材料。各种材料的比容量和性质又各不相同,具体数据如表1所示。
探索和改进,技术较为成熟。按照材料的组分,通常可以将锂电池负极材料分为2大类:碳材料和非碳质材料。碳材料负极进一步分类为天然石墨负极、人造石墨负极、中间相碳微球(MCMB)、软炭(如焦炭)负极、硬炭负极、碳
石墨为层状堆垛结构,层间距为 0.335 nm,同层的碳原子以sp2杂化形成共价键结合,石墨层间以范德华力结合。在每一层上,碳原子之间都呈六元环排列方式并向二维方向无限延伸。石墨的这种层状结构可以使锂离子很容易的嵌入和脱出,并且在充放电过程中其结构可保持结构稳定。石墨负极材料的理论容量为 372 mAh/g,但实际比容量为330~370 mAh/g;石墨具有明显的低电位充放电平台(0.01~0.2 V),大部分嵌锂容量都在该电压区域内产生,充放电平台对应着石墨层间化合物 LiC6的形成和分解,这有利于给锂电池提供高而平稳的工作电压。但是石墨负极材料也有一定的缺陷,在充放电过程中它易与电解液反应生成 SEI 膜,使得锂离子电池首次库伦效率较低;此外,石墨负极与电解液的相容性较差,容易与电解液中的有机溶剂发生共嵌入情况,这会导致负极石墨层膨胀剥落,进而使得锂离子电池循环稳定性降低。针对此类问题,技术工艺上可以用微氧化石墨或者用无定型碳进行表面包覆,从而减少共嵌入现象的发生
天然石墨负极由天然石墨加工而成,国内石墨资源储量和产量丰富,开采成本较低。天然石墨具有比较完整的石墨片层结构和很高的石墨化度,适合锂离子在其中脱嵌和穿梭,并且。缺点为天然石墨未经改性循环性能较差。常见解决方法为使其球形化以减小天然石墨的粒度和比表面积,这会减小天然石墨负极在循环过程中与溶剂的副反应;其次是构造核-壳复合结构,一般是在改性球化后的天然石墨表面包覆薄薄一层非石墨化的炭材料(如用沥青),提高负极材料的在锂电池中的稳定性;最后是人为修饰或改变天然石墨表面状态,同样可以达到提高单一天然石墨负极得稳定性和持久性。
中间相炭微球(MCMB)微观结构为球形片层颗粒,具有各项同性, 主要是对煤焦油进行特殊处理后获得的中间相小球体,它经2 800℃以上高温石墨化处理得到中间相炭微球负极材料。中间相炭微球负极在锂电池中具有电极压实密度高及可大电流快速充放电的性能优势;但中间相炭微球生产制造成本较高,容量偏低,容量在320~350mAh/g之间,这限制了其使用范围。
软碳,在高温条件(>2 500℃)下处理可以石墨化结构的无定形碳。软碳材料的突出优点是可逆比容量高,一般大于300 mAh/g,与有机溶剂相容性较好,因此锂电池的循环稳定性好,较适合大电流密度的锂电池充放电。软碳是指在2 500℃以上的高温下能石墨化的无定型碳。软碳的结晶度(即石墨化度)低、与电解液的相容性好。常见的软碳有石油焦、针状焦、碳微球等。软碳负极材料内部具有大量的乱层结构及异质原子, 其容量一般在250~320 mAh/g, 并且其电压滞后性大,首次充放电效率低,并且容量衰减较快,因此难以获得实际应用。
碳纳米管(CNT)(见图3)是一种具有较完整石墨化结构的特殊碳材料,其自身具有优良的导电性能和高的导热系数。因其结构特殊,导致负极在脱嵌锂时深度小、行程短、速度快,并且在大倍率大电流充放电时极化作用较小,可对提高锂电池电池的大倍率快速充放电性能很有帮助。然而,碳纳米管单独直接用作锂离子电池负极材料时,会存在锂电池不可逆容量高、首次充放电库伦效率低、充放电平台不明显及电压滞后严重等突出问题。将碳纳米管直接做负极材料,有数据表明其首次放电容量1 500~1 700mAh/g,但是可逆容量仅为400mAh/g,随着锂电池进一步进行充放电循环,可逆容量更低,衰减速度更快。这就导致了其在锂电池中的进一步应用。
利用钛酸锂做锂电池负极优点如下:首先,更高的安全性。钛酸锂独特的物理性能使其具备传统锂离子电池所不具备的高安全特性。钛酸锂与电解液中溶剂间的反应活性较低,在表面基本不生成SEI绝缘钝化膜,这大大改善了锂电池的化学稳定性和安全性能。在较高的温度环境下,钛酸锂能够吸收正极分解所产生的氧气,降低了热失控的风险,提高了锂电池的安全性能。同时钛酸锂负极从根本上消除了金属锂在负极上枝晶现象的产生,大大降低了锂电池内部发生短路的风险。其次,钛酸锂负极锂电池寿命长。由于钛酸锂负极材料本身的结构稳定,并且在充放电过程中保持电极结构稳定,这使锂电池的循环寿命极大地提高,循环次数可达25 000次以上。再次,宽范围的工作温度范围和可快速充放电。钛酸锂电池有着传统锂离子电池所不具备的优异高低温性能和快速充放电功能。由于钛酸锂负极材料结构稳定,在低温环境下各项电化学性能指标仍能保持常温时的状态,这使钛酸锂电池具备在-50℃~60℃很宽的高低温范围内完全充放电的电化学表现。而目前以石墨为负极的锂离子电池可以在-40℃左右放电(放电量较低),但却无法在-10℃及更低温度下实现常规电流的充电。
特别是钛酸锂电池与目前纯电动客车上应用比例最高的磷酸铁锂电池相比,优势仍然突出。除了能量密度比磷酸铁锂电池略低以外,在安全性、使用寿命、充电时间、工作温度范围等方面,钛酸锂电池都完胜。比如,磷酸铁锂电池在加热到160℃时会发生爆炸,因为有SEI绝缘膜,不仅影响首次充放电效率,初次循环容量损失超过10%,而且高于45℃时易分解,高温时循环寿命衰减很快。此外,快充对循环寿命影响较大,寿命为5~8年。但钛酸锂电池无SEI绝缘膜,初次循环无容量损失,且快充对循环寿命影响较小,仅需6min,热稳定性强,循环使用寿命可长达10a。