定制热线: 400-678-3556

宝鄂百科

锂电池真的好用吗?锂电池寿命是多久?

来源:宝鄂实业    2019-05-09 09:15    点击量:
在开发锂金属负极以及其他高容量正极化学品(如硫和氧)时,研究人员发现利用固体电解质(SSE)取代传统电解液时具有很好的安全性,因此开发基于固体电解质的锂金属电池或许可以从根本上解决安全性的问题。同时,研究结果表明在室温下的离子电导率就高于10-3 S cm-1的超离子导体。然而,SSE与电极的相容性差产生的高界面阻抗的问题,限制了它们的实际应用。目前,科研人员已经提出了采用先进的分离器、电解质添加剂和正温度系数(PTC)改进的集电器等新方法以提高锂金属电池的安全性。因此,现在迫切需要开发出具有更高能量密度、更长循环寿命和更高安全性的锂金属电池的新化学品或技术。
 
最近,Chem在线刊登了美国斯坦福大学的崔屹教授和中国上海科技大学的刘巍研究员(共同通讯作者)、上海科技大学博后夏水鑫(第一作者)和上海科技大学15级本科生吴昕晟(共同一作)等人总结的关于全固态锂金属电池的发展现状和未来前景的综述。题目是“Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries”。在这篇综述中,首先总结了高导电固体电解质(SSE)的主要挑战和最新发展,包括聚合物、无机和复合材料,以及用于下一代高能量密度的锂电池,从基础理解到技术创新。其次,总结了关于SSE和电极界面问题的策略。接着,介绍了锂金属负极与锂嵌入化合物、硫和氧正极结合的ASSLMBs的当前进展和实际挑战。最后,还展望了基于锂金属负极的ASSLMBs的未来前景。
 
全固态锂金属电池的实际挑战和未来前景
 
1、锂离子电池的发展历史简介
离子电池(LIBs)的发展经历了从基于锂(Li)-金属负极的Li-金属电池(LMBs)到使用锂-嵌入化合物电极的LIBs,然后到LMBs的复兴过程。
 
图一、典型固体电解质(SSE)和固态电池(ASSLBs)向ASSLMBs发展的简要年表
 
 
图二、使用固体电解质到基于锂金属负极的ASSLMBs、ASSLSBs和ASSLABs等先进电池的锂电池从常规LIBs到ASSLIBs的发展趋势示意图
 
2、锂电池的固态电解质
2.1、固态电解质(SSE)在实际应用中存在以下的问题:
(1)SSE的低离子电导率,特别是在低温下;
(2)电极—电解质的固固界面处的界面电阻大;
(3)与电极的电化学兼容性差,如锂金属负极和高电压正极材料;
(4)电极的物理稳定性下降导致大的界面应力变化。
2.2、对固态电解质的基本理解
SSE中的锂离子传输主要分为两类:聚合物和无机材料中的离子传输。SSE中离子电导率的温度依赖性通常由Arrhenius(对于晶体材料)或Vogel Tammann-Fulcher (VTF)方程(对于无定形材料)来模拟。
图三、两种用于SPEs的锂离子传导机制的示意图
 
(A)SPE的非晶相中的Li离子传导;
(B)SPE结晶相中的Li离子传导。
2.3、电解质—电极界面的锂离子传输
电解质和电极之间的高界面电阻对电池的整体性能具有显著的影响,阻碍了ASSLBs发展。ASSLBs的电化学反应不同于使用具有固—液界面的液体电解质的锂电池,其通过固、固电解质—电极界面进行。锂离子是通过它们的互连区域从电解质扩散到电极,并在接触电解质-电极界面处发生与活性材料和电子的氧化还原反应。
 
全固态锂金属电池的实际挑战和未来前景
(A)正极—电解质界面处形成的Li缺陷层;
(B)Li减少的分解层面对Li-金属负极;
(C)各种SSE材料的电化学稳定性区域。
 
2.4、电解质—电极界面的观察 
通过纳米工程和材料设计技术了解和改善电解质—电极界面的行为对于构建具有改善的电化学性能的安全锂电池是绝对有必要的。 同时,在原子尺度上实时观察电池中发生的界面演变,将更有助于研究人员对电池发生的变化的了解和掌握。
图六、各种先进技术观察电解质—电极界面的微观结构和形貌
全固态锂金属电池的实际挑战和未来前景
(A)原位STEM的设置;
(B)通过TEM操作的EH,在充电状态(顶部)下的电极—电解质界面处的锂离子和电子的分布以及测量的电位分布(底部);
(C)用于X射线显微镜的操作液体成像平台;
(D)通过冷冻TEM表征的程序。
3、固态电解质
3.1、固体聚合物电解质
干燥聚合物的SPEs可以溶解的锂盐,且具有柔韧性好、重量轻、良好的可加工性和低的成本的优势,明显优于无机固体电解质。
 
图七、单离子聚合物电解质及其相应的电导率性能
全固态锂金属电池的实际挑战和未来前景
(A) 单离子导电聚合物电解质的化学结构;
(B) 具有不同比例的P(STFSILi)的聚合物电解质的导电性能;
(C) 单锂离子导体LiPSsTFSI聚合物的合成路线;
(D) 不同电解质的导电性能。
 
3.2、无机固体电解质
无机固体锂离子导体主要包括石榴石型、钙钛矿型、钠超离子导体(NASICON)型和锂超离子导体(LISICON)型材料以及硫化物玻璃等。它们大致可以分为两类:氧化物和硫化物。