定制热线: 400-678-3556

宝鄂百科

基于插层锂负极的全固态锂金属电池

来源:宝鄂实业    2019-02-28 22:13    点击量:

SPEs在电池应用中的主要问题是它们在室温下具有相对有限的离子电导率、低电压区域和窄的操作温度。但是,通过交联是一种有效改善PEO基电解质的离子电导率和机械强度的方法。还报道了用于ASSLMBs构造的固态 sp3 硼基单离子导电PEO基聚合物电解质膜(S-BSM)。锂离子与 sp3 硼原子之间的弱关联作

(A)在18 C和100℃下,LTO/Li9.54Si1.74P1.44S11.7Cl0.3/LCO ASSLBs的循环性能;

(B)LGPS系列的电化学稳定性;

(C)电池的拉格尼图。

 

4.2、全固态锂硫电池

由于锂硫电池具有高理论能量容量 (1672 mAh/g)、成本效益、无毒性和天然丰度的优势,所以硫被认为是最有希望的下一代高能系统的正极候选物。然而,锂硫电池也存在硫、含硫有机化合物的低电子和离子传导性以及多硫化物穿梭效应的缺点,导致硫作为正极的利用不足,阻碍了其商业化。梭式效应实际上是源于多硫化物在有机液体电解质中的溶解和扩散。梭式效应的作用过程是在正极处形成的多硫化物可以转移到锂负极,之后它们被还原成较低的多硫化物,生成的较低的多硫化物又可以被输送回正极,在被氧化后返回负极。穿梭效应导致低活性物质利用率、低CE,因此循环寿命短。

 

(B) ASSLABs在0.2 mA/cm2和80 ℃下的循环性能;

(C) 具有LAGP SSEs的ASSLABs的示意图;

(D) ASSLABs在400 mA/g下的循环性能。

 

5、总结与展望

随着高容量化学品(如锂金属负极、硫和氧正极材料)的发展,SSEs在“超越锂”电池具有高能量密度、适用于大规模储能的优点在应用中发挥着越来越重要的作用。利用SSEs可以从根本上解决易燃有机液体电解质、锂金属负极低CE和锂枝晶形成、硫正极可溶性多硫化物的穿梭效应以及开放引起的锂空气电池空气组件的不稳定性等问题。尽管已经在SSEs方面取得了许多进展,但是大面积推广仍有一些问题需要解决。例如:离子电导率、界面阻抗、机械强度和与电极的兼容性、成本效益。同时,我们需要注意的是除了所需的高能量密度之外,应根据不同的应用有效地利用不同的优点,例如便携式电子设备和电动车的高功率密度以及智能电网存储的低的维护成本。此外,改造现有的电池制造工艺或ASSLMBs的新制造技术对于短期实际应用也是非常重要。相信随着科学技术的发展,提供高能量密度、高功率密度、长循环寿命和高安全性的ASSLMBs将在未来逐渐走向市场。