定制热线: 400-678-3556

宝鄂百科

锂离子动力电池最为活跃的板块之一吗?

来源:宝鄂实业    2019-05-11 22:55    点击量:
本文从锂离子电池工作原理、负极材料分类及发展、未来展望等3个方面介绍。
 
 
一、锂离子电池
 
 
锂离子电池是一种可充电二次电池,主要由正极、负极、电解液、隔膜和集流体等主要5部分组成。正负极材料主要功能是使锂离子较自由的脱出/嵌入,从而实现充放电功能。锂离子电池工作原理如下图1所示,充电过程中,锂离子从正极材料中脱出,经过电解液嵌入到对应的负极材料中,同时电子从正极流出经过外电路流向负极;锂电池放电时,锂离子从负极脱出,经过电解液重新嵌入到正极材料中,同时电子经过外电路从负极流向正极。因而锂电池的充放电过程本质就是锂离子在正负极之间的脱锂和嵌锂的过程。在理想状态下,认为在正负极材料之间的脱锂和嵌锂过程不会引起正负极材料结构的损坏,可以视作是充放电过程可逆。
 
 
 
锂电池优点如下:能量密度大,可达120~260Wh/kg;工作电压高,3.6~3.7V;自放电率低,年自放电低于10%;无记忆效应,可以随时充、放电;使用寿命长,超过1 000次,可达2 000次;绿色环保,不含镉、铅、汞等重金属。
 
 
二、负极材料
 
 
锂电池负极材料目前处于锂离子电池产业中最关键的环节。按锂离子电池成本比例,负极材料占比锂电池总成本的25%~28%。相对于锂电池正极材料,负极材料的研究方兴未艾。较为理想的负极材料最少要具备以下7点条件:化学电位较低,与正极材料形成较大的电势差,从而得到高功率电池;应具备较高的循环比容量;在负极材料中Li+应该容易嵌入和脱出,具有较高的库伦效率,以至于在Li+脱嵌过程中可以有较稳定的充放电电压;有良好的电子电导率和离子电导率;有良好的稳定性,对电解质有一定的兼容性;对于材料的来源应该资源丰富,价格低廉,制造工艺简单;安全、绿色无污染。
 
 
符合以上各个条件的负极材料目前基本不存在,因此研究能量密度高,安全性能好,价格便宜,材料易得的新型负极材料成为当务之急,这也是现阶段锂电池研究领域的热门课题。现阶段,锂离子电池负极材料主要有碳材料、过渡金属的氧化物、合金材料、硅材料及其他含硅材料,含锂的过渡金属的氮化物以及钛酸锂材料。各种材料的比容量和性质又各不相同,具体数据如表1所示。
 
 
 
 
探索和改进,技术较为成熟。按照材料的组分,通常可以将锂电池负极材料分为2大类:碳材料和非碳质材料。碳材料负极进一步分类为天然石墨负极、人造石墨负极、中间相碳微球(MCMB)、软炭(如焦炭)负极、硬炭负极、碳纳米管、石墨烯、碳纤维等;其他非碳负极材料主要分为硅基及其复合材料、氮化物负极、锡基材料、钛酸锂、合金材料等。
 
 
1. 碳材料
 
 
碳材料负极是一个总称,一般可分为5大类:石墨、硬炭、软炭、碳纳米管和石墨烯。石墨又可分为人造石墨、天然石墨、中间相炭微球。更详细分类如下图2显示,主要石墨负极材料的性能指标对比如表2所示。
 
 
 
石墨为层状堆垛结构,层间距为 0.335 nm,同层的碳原子以sp2杂化形成共价键结合,石墨层间以范德华力结合。在每一层上,碳原子之间都呈六元环排列方式并向二维方向无限延伸。石墨的这种层状结构可以使锂离子很容易的嵌入和脱出,并且在充放电过程中其结构可保持结构稳定。石墨负极材料的理论容量为 372 mAh/g,但实际比容量为330~370 mAh/g;石墨具有明显的低电位充放电平台(0.01~0.2 V),大部分嵌锂容量都在该电压区域内产生,充放电平台对应着石墨层间化合物 LiC6的形成和分解,这有利于给锂电池提供高而平稳的工作电压。但是石墨负极材料也有一定的缺陷,在充放电过程中它易与电解液反应生成 SEI 膜,使得锂离子电池首次库伦效率较低;此外,石墨负极与电解液的相容性较差,容易与电解液中的有机溶剂发生共嵌入情况,这会导致负极石墨层膨胀剥落,进而使得锂离子电池循环稳定性降低。针对此类问题,技术工艺上可以用微氧化石墨或者用无定型碳进行表面包覆,从而减少共嵌入现象的发生。
 
 
2.天然石墨负极
 
 
天然石墨负极由天然石墨加工而成,国内石墨资源储量和产量丰富,开采成本较低。天然石墨具有比较完整的石墨片层结构和很高的石墨化度,适合锂离子在其中脱嵌和穿梭,并且。缺点为天然石墨未经改性循环性能较差。常见解决方法为使其球形化以减小天然石墨的粒度和比表面积,这会减小天然石墨负极在循环过程中与溶剂的副反应;其次是构造核-壳复合结构,一般是在改性球化后的天然石墨表面包覆薄薄一层非石墨化的炭材料(如用沥青),提高负极材料的在锂电池中的稳定性;最后是人为修饰或改变天然石墨表面状态,同样可以达到提高单一天然石墨负极得稳定性和持久性。
 
 
3.人造石墨负极
 
 
人造石墨负极为炭材料加工而来,它是将易石墨化的软炭材料经2 500℃以上高温石墨化处理制成,此时碳材料内部二次粒子以随机方式进行排列,存在大量孔隙结构,这有利于电解液的渗透和锂离子咋负极中的脱嵌穿梭,因此人造石墨负极材料能提高和增加锂离子电池的快速充放电速度和次数。人造石墨具备长循环、高温存储、高倍率等天然石墨所不具备的优势,国内新能源汽车用动力锂电池所采用的负极材料目前多为人造石墨负极。2016年,人造石墨在负极材料中的市场占有率超过60%,未来几年新能源汽车动力电池市场的蓬勃发展是推动人造石墨需求和产量大幅上升的主要动力。
 
 
4.石墨化中间相炭微球
 
 
中间相炭微球(MCMB)微观结构为球形片层颗粒,具有各项同性, 主要是对煤焦油进行特殊处理后获得的中间相小球体,它经2 800℃以上高温石墨化处理得到中间相炭微球负极材料。中间相炭微球负极在锂电池中具有电极压实密度高及可大电流快速充放电的性能优势;但中间相炭微球生产制造成本较高,容量偏低,容量在320~350mAh/g之间,这限制了其使用范围。