锂电池废弃材料如何处理?
来源:宝鄂实业
2019-05-21 10:01
点击量:次
从废旧的LIB中回收金属已经有了广泛的研究,但这些工艺大多具有显著的缺点,例如溶剂昂贵、气体排放量高、循环路线复杂、化学试剂消耗量大等,使得这些工艺难以在工业上大规模实施;而且并非所有高纯度回收的金属都满足作为制备新型LIB的电池级材料。因此,研究人员发明出一种有效的浸出-再合成技术,通过从渗滤液中合成材料,避免了金属离子的多级分步分离,使二次污染最小化。
一般来说,酸浸后的再结晶金属产物的高纯度可以通过共沉淀、溶胶-凝胶或固相反应等短路线实现,在溶出溶胶-凝胶法中,将废电池中回收的正极材料(NCM或LCO)溶解在有机或无机酸性介质中,并加入一定摩尔比的金属离子的浸出液进行一步共沉淀以形成凝胶。
在固相反应中,首先以浸出液为原料,经共沉淀法制备出Co/Ni-Mn-Co前驱体,将工业回收的Li2CO3或LiNO3与回收前驱体混合煅烧再生正极材料。
3.1 NCM正极再生
通过两种不同有机酸渗滤液来比较NCM再生正极材料的性能,发现顺丁烯二酸(NCM-Ma)比乙酸(NCM-Ac)处理的容量更高,这是因为NCM与顺丁烯二酸之间的螯合能力更强。除了有机酸以外,无机酸也可以起到同样的效果,例如H2SO4是最常用的浸出剂,尽管使用硫酸会释放有害气体造成空气污染,浸出后循环使用困难,以及对环境产生有害影响,然而,从无机酸中浸出锂的成本很低。
应注意的是,铝等杂质在与正极材料分离的过程中可能存在,当其达到一定水平时还会影响材料性能。
Figure6。 NCM–V2O5正极材料通过不同干燥方法后的a)循环性能和b)倍率性能。通过喷雾干燥获得废弃NCM和NCM–V2O5材料的c) 循环性能,d)倍率性能,e)循环伏安曲线以及f)交流阻抗图。
从废弃的锂电池和含钒渣的废液中可以获得性能较高的正极材料,例如通过固态反应获得的NCM–V2O5正极材料;固态合成是使用最广泛的策略,可以在较高温度下从固态源材料混合物中制备出多晶固体。
3.2 LCO正极再生
在最开始的时候,许多研究都集中在废弃LCO材料中Li和Co的分离上,而没有再生活性材料;后来,为了电池工业的可持续发展,一些研究者在不分离金属的情况下对废弃LCO正极材料进行再生。在该再生过程中,将机械和热处理后高浓度的正极活性材料进行硝酸浸取,然后通过溶胶-凝胶法从渗滤液中产生LCO,再生的正极材料因在30次循环后的放电容量为140mAh/g。
Figure7。再生LiCoO2正极材料在25℃时的电化学性能: a) 0.2 C, b)倍率性能。
通过系统的有机酸浸出、化学沉淀和固相反应三个步骤,可以从LCO粉末中提取约100%的Li和99.8%的Co,得到再生正极材料在0.2C电流密度下经50次循环后的放电容量为105 mAh/g。
3.3 LFP正极再生
Figure8。 再生LFP和废弃LFP材料在2.0–4.2 V电压区间内的电化学性能: a)再生LFP和b)废弃LFP材料在从0.1到20 C不同电流密度下的充放电曲线。 c) 两种材料在不同充电速率下的倍率性能和循环性能。 d) 两种材料在5 C 电流密度下的循环性能。
在不断探索新型正极材料的过程中,橄榄石结构的代表材料磷酸铁锂LFP逐渐被研究人员所重视,由于其具有优异热稳定性且成本较低,近年来LFP已经被广泛商业化。磷酸作为助浸剂和沉淀剂可以先合成FePO4·2H2O,然后通过碳热还原法回收Li2CO3,制备出再生的LFP-C正极材料。
3.4 石墨/碳负极再生
Figure9。 a)商业石墨(CG), 废弃石墨(SG), 再生石墨(RG), 无定形碳涂覆石墨(AC@G)电极在0.1 C时的循环性能。 b) AC@G电极在0.5 C时的循环性能。 c) CG, SG, RG,AC@G电极在不同电流密度下的倍率性能。 d) RG和e) AC@G在0.1 C时的恒流充放电曲线。 CG, SG, RG, andAC@G电极在0.1 C时的f) 100th充电平台和g) 100th充放电平台。
通常高容量石墨负极材料的再生方法有两种,第一种方法,将废弃石墨加入乙二醇中形成混合物并进行微波剥离,然后通过喷雾干燥获得再生石墨,该法获得的再生负极可以在0.1 C下循环100圈获得409 mAh/g的放电容量;第二种方法是通过溶胶-凝胶工艺制备无定形碳包覆石墨,该方法可以从废弃石墨中制备出不同种类的碳材料。
除此以外,从废弃锂离子电池中获得的再生材料也可以用于其它应用,例如超级电容器电极材料,电化学析氧反应催化剂,磁性评估等各个领域。
Figure10。 a)四种电极(Al rGO-RT, SS rGO-70, SS rGO-RT, Al rGO-70)的交流阻抗结果。 b) 四种电极(Al rGO-RT, SSrGO-70,SS rGO-RT, Al rGO-70)在5 mV/s扫速下的循环伏安曲线。 c) Al rGO-RT 电极在不同扫速下(5–125 mV/s)的循环伏安曲线。 d)四种电极(Al rGO-RT,SSrGO-70, SS rGO-RT, Al rGO-70)在0.5 A/g下的恒流充放电曲线。
Figure11。 a)纯CC, 再生尖晶石MnCo2O4, 再生LiCoO2, 再生 LixMnOx+1,c-Co3O4, c-MnO2, c-RuO2在5 mV/s扫速下的LSV曲线。 b) 各类催化剂的电流密度-过电位曲线。 c) 各类催化剂的过电位-质量活性曲线。 d) 各类催化剂的塔菲尔斜率曲线。