定制热线: 400-678-3556

宝鄂百科

详解锂离子电池相关技术及发展

来源:宝鄂实业    2019-08-09 10:59    点击量:
(1) 更长的寿命(对于电动汽车而言需要电池寿命超过10年);
(2) 优异的快充性能(充电至80%的荷电状态仅需20分钟);
(3) 优异的低温循环性能及容量恢复能力;
(4) 无懈可击的安全性能。
有趣的是,这四个倍受瞩目的电池性能均与析锂副反应密切相关,该副反应引起的电池老化过程和负极反应动力学变化对上述四个性能造成了巨大的影响。
 
一、锂沉积副反应何时发生?
 
锂离子电池充电时,Li+从正极脱嵌,这些Li+在电解质中扩散至负极表面,并嵌入负极材料中。以石墨负极为例,当负极电位下降至200-65 mV vs. Li+/Li时,发生嵌锂过程;随着充电继续进行,负极电位下降至0 V vs. Li+/Li以下,就发生了锂沉积副反应,此时负极的锂沉积副反应与嵌锂反应同时进行。考虑到极化的影响,当平衡电位与过电位(来自欧姆电阻、电荷转移和扩散过程)之和相对于Li+/Li电对为负值时,就发生了锂沉积副反应。
 
二、锂沉积副反应的影响因素?
 
1.将锂离子电池的正负极与金属锂参比电极构成如图2(b)所示的三电极体系进行充电测试,得到负极电位随全电池电压的变化如图2(a)所示。研究发现,当荷电状态(SOC)和充电电流密度越大,测试温度越低,石墨负极的电位就会越负,负极表面的锂沉积副反应也越容易发生。
2.锂电池层面:在一定范围内增大N/P比有助于将负极的荷电状态限制在较低水平,从而降低电池老化速率,使电池内阻增加更慢。
3.负极反应动力学:析锂反应也受到负极材料种类、形貌、电导率的影响。它们从扩散传质或电荷转移的角度影响负极极化程度,从而对负极电位及负极反应造成影响。
4.活化能:溶剂化锂离子在电解液中扩散时需要克服的活化能可以忽略不计,而溶剂化锂离子在去溶剂化、扩散穿过SEI膜及电荷转移过程中需要克服的活化能却最高。随着充电过程的进行,负极嵌入的Li+数目逐渐增多,Li+在负极活性材料中扩散时需要克服的活化能增大,固相扩散更加困难。
5.温度:根据阿伦尼乌斯公式,当电池在低温下循环时,析锂反应相对于嵌锂过程有更大的反应速率,即在低温条件下负极更倾向于发生析锂反应。这已被低温下石墨负极电位更负的实验观测结果所验证。此外,低温条件下的电荷转移与固相扩散也更慢,负极表面沉积的金属锂与电解质之间的反应速率也会下降。
6.充电倍率:充电电流倍率决定了单位面积负极材料上的锂离子通量。当Li+在负极内的固相扩散过程较慢(例如当温度过低、荷电状态较高或Li+在该材料中扩散需要克服较大的活化能),而充电电流密度过大时,负极表面就会发生析锂反应。当其他条件不变,而电流密度增大到一定阈值时,负极电位就会变负,并伴随着析锂反应的开始。
7.其它:负极表面是否发生析锂反应是由充电倍率、温度、荷电状态这三个因素共同决定的。例如:(1) 在低温条件下充电并不意味着负极一定会发生析锂反应。只有当荷电状态和(或)电流密度超过一定阈值时才会发生析锂反应。(2) 在锂离子电池的充电过程中,如果在荷电状态较低时采取较高的充电电流密度,而在荷电状态较高时采取较低的充电电流密度,析锂反应就能得到有效的抑制。
三、从不同角度收集锂沉积副反应的实验证据
 
Margret Wohlfahrt-Mehrens博士选取了近年来被广泛研究的5种商业锂离子电池,并把它们编号为电池1-电池5,从以下四个角度收集了锂沉积副反应的实验证据:(1) 老化特性;(2) 电压曲线;(3) 电池的物理化学性质;(4) 电极的物理化学性质。能为锂沉积副反应提供直接及间接实验证据的表征手段如表1所示。
 
1.通过分析库伦效率检测锂沉积副反应的程度:涉及锂沉积副反应的电池老化机制使电池的库伦效率下降,因此通过精确测定锂离子电池的库伦效率来监测锂沉积副反应的程度是一个可行的方法。锂沉积副反应中生成的金属锂与电解质反应生成SEI膜,使库伦效率下降。需要注意的是,库伦效率的下降并不完全是由锂沉积副反应引起的。例如电极活性材料的脱落、SEI膜的形成和电极表面微孔的堵塞都会增大电池内阻,并造成不可逆容量损失,这些现象都会使库伦效率下降。
 
2.通过分析阿伦尼乌斯曲线得到锂沉积副反应的表观活化能:在不同温度下对锂离子电池进行充放电循环测试,就可以从不同温度下的容量衰减曲线得到阿伦尼乌斯曲线(图4)。当温度较高时,锂沉积副反应并未发生,正极活性材料的溶解和正负极表面SEI膜的生成随温度升高而加快,电池老化速率也随之加快;而当温度较低时,锂沉积副反应登上舞台,这使老化机制骤然转变,由于锂沉积副反应随温度下降而愈演愈烈,所以电池老化速率随温度的下降而加快。综上所述,锂离子电池的阿伦尼乌斯曲线呈如图4所示的V形,其斜率为老化过程中表观活化能的负值(-Ea)。锂沉积副反应具有负的表观活化能。
 
如果锂离子电池的老化速率很慢,则说明锂沉积副反应尚未发生。T. Waldmann等通过监测负极电位,已制定出能够有效抑制锂沉积副反应的最佳充电方案。
 
当锂离子电池先在低温下进行充放电循环,再在室温下静置或循环时能观察到8%-10%的容量恢复。这一现象也能说明在低温循环过程中发生了锂沉积副反应。当温度升高时,负极表面沉积的部分金属锂嵌入石墨层间,使锂沉积的程度减轻,并恢复了部分容量。