定制热线: 400-678-3556

宝鄂百科

锂电池的失效主要分为几类?

来源:宝鄂实业    2019-08-10 08:40    点击量:
锂电池的失效主要分为两类:一类为性能失效, 另一类为安全性失效,如图1所示。性能失效指的是锂电池的性能达不到使用要求和相关指标,主要有容量衰减或跳水、循环寿命短、倍率性能差、一致性差、易自放电、高低温性能衰减等;安全性失效指的是锂电池由于使用不当或者滥用,出现的具有一定安全风险的失效,主要有热失控、胀气、漏液、析锂、短路、膨胀形变等。
 
失效分析的诞生伴随失效现象,以判定和预防其发生为目的。失效分析是一种判断产品失效模式、分析失效原因、预测或预防失效现象的技术活动和管理活动。人们对锂电池的使用性能指标提出了更高的要求,尤其凸显在体积/质量能量密度、功率密度、循环寿命、成本、安全性能等方面. 例如在《中国制造2025》中提到了能量型锂电池比能量大于300 W·h/kg, 功率型锂电池比功率大于4000 W/kg的发展目标。1990—2025年锂离子电池能量密度发展路线图。为了满足市场的需求,提高电池的性能与安全性,缩短新体系研发周期,开展锂电池失效分析是十分必要的。
虽然产品的诞生伴随着失效,但失效为人们所认知是从失效现象开始, 所以失效分析工作要始于失效现象。首先应从锂电池失效现象着手,锂电池失效现象是锂电池失效分析的第一步, 是最直接最重要的失效信息之一。若没有充分掌握和分析锂电池失效的信息,则不能准确获取锂电池失效的根本原因,因而不仅不能提供建设性建议或可靠性评估。失效现象分为显性和隐性两部分。显性指的是直接可观测的表现和特征,例如失效现场出现并可通过粗视分析观察到的表面结构破碎和形变,包括起火燃烧、发热、鼓胀(产气)、变形、漏液、封装材料破损及畸变、封装材料毛刺、虚焊或漏焊、塑料材质熔化变形等。隐性指的是不能直接观测而需要通过拆解、分析后得到的或者是模拟实验中所展现的表现和特征,例如通过实验室拆解检测到的微观失效,以及模拟电池中电学信息等。锂电池失效过程中常有的隐性失效现象有正负极内短路、析锂、极片掉粉、隔膜老化、隔膜阻塞、隔膜刺穿、电解液干涸、电解液变性失效、负极溶解、过渡金属析出(含析铜)、极片毛刺、卷绕(或叠片)异常、容量跳水、电压异常、电阻过高、循环寿命异常、高/低温性能异常等。失效现象的范围常常会与失效模式的范围有交集,失效现象更偏向对现象的直接描述, 属于对失效过程的信息收集和描述;失效模式一般理解为失效的性质和类型,是对失效的归类和划分。锂电池失效现象是电池失效表现的大集群,对其进行定义和分类是十分必要的。
 
失效是失效原因的最终表现,也是失效原因在一定时间内叠加失效现象的结果。失效分析的重要任务之一是对失效原因进行准确判定。常见的锂电池失效原因有活性物质的结构变化、活性物质相变、活性颗粒出现裂纹或破碎、过渡金属溶出、体积膨胀、固体电解质界面(SEI)过度生长、SEI分解、锂枝晶生长、电解液分解 或失效、电解液不足、电解液添加剂的失配、集流体腐蚀或溶解、导电剂失效、黏结剂失效、隔膜老化失效、隔膜孔隙阻塞、极片出现偏析、材料团聚、电芯设计异常、电芯分容老化过程异常等。图3展示的是锂电池内部失效情况。从锂电池失效原因研究内容可将其分为外因和内因。其中外因包括撞击、针刺、腐蚀、高温燃烧、人为破坏等外部因素;而内因主要指的是失效的物理、化学变化本质, 研究尺度 可以追溯到原子、分子尺度, 研究失效过程的热力学、动力学变化. 锂电池的失效归根结底是材料的失效。材料的失效主要指的是材料结构、性质、形貌等发生异常和材料间失配。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎,硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化,电解液受到湿度温度的影响发生分解或变质,石墨负极与电解液中添加剂的碳酸丙烯酯(PC)发生的溶剂共嵌入问题, N/P(负极片容量与正极片容量的比值)过小导致的析锂。
 
锂电池的失效原因并不总能与失效一一对应, 存在“一对多”、“多对一”和“多对多” 的关系。某一失效原因可能在时间跨度中有不同的表现, 例如充放电制度异常导致大电流充放电,最开始可能会表现出极化较大,中间阶段会因锂枝晶的析出导致内短路, 随后伴随着锂枝晶的分解与再生, 最后可能会出现热失控。某一失效原因可能会发生多种截然不同的失效, 例如局部过渡金属的析出,可能会产生气体, 形成鼓胀的失效表现,但也可能因为内短路形成局部发热, 进而导致隔膜收缩,引起大面积的热失控。某一个失效现象可能对应着多种失效原因,例如容量衰减究其失效机理有材料结构变化、微结构破坏、材料间接触失效、电解液失效或分解、导电添加剂失效等。失效分析分为两个方向: 其一为基于锂电池失效的诊断分析, 是以失效为出发点, 追溯到电池材料的失效机理, 以达到分析失效原因的目的; 其二为基于累积失效原因数据库的机理探索分析, 是以设计材料的失效点为出发点, 探究锂电池失效发生过程的各类影响因素, 以达到预防为主的目的。
 
锂电池的诊断分析以锂电池失效为出发点,根据电池的失效表现, 对电池进行电池外观检测、电池无损检测、电池有损检测以及综合分析。面对实际案例时,需要根据不同情况对分析流程及测试项目进行调整和优化。以容量衰减电池失效分析为例(如图4所示),结合失效表现和使用条件细化失效行为,并提供相应分析侧重点。如正常循环衰减,则后期分析注重于材料结构变化、SEI过度生长以及析锂等因素。通过对失效电池外观检查, 确定是否存在外部结构变化或电解液外漏等因素.无损检测主要包括微米X射线断面扫描(XCT)和全电池电化学测试。通过无损检测分析的结论,进一步确认内部结构变化情况、量化失效行为、选择测试项目、调整分析流程。例如,对比图5中某款 LiFePO4/C失效电池和新鲜电池全电池充放电曲 线分析显示放电容量衰减21%, 进一步对充放电曲线处理得到容量增量(IC)曲线, 根据曲线峰位整体向高电位移动,表明存在材料结构变化引起锂脱嵌难度增加,结合3.27 V和3.32 V处更为明显的峰强变化,表明该电池容量衰减主要是由于活性锂源损失及活性材料结构破坏,并且进一步佐证了分析侧重点。所谓电池有损检测是指通过电池拆解、极片 观察及材料测试分析来确定正负极片、活性材料以及隔膜等因素在电池失效中的作用. 其中材料的测试分析则以物化性能和电化学性能测试为主.例如对上述LiFePO4/C失效电池极片进行扫描电子显微镜(SEM)形貌测试结果显示正极材料有明显的结构破坏,X射线衍射(XRD)结构谱图中18.5◦和31◦峰强的增加揭示了Fex(POy)相的增加,即正极材料存在相变现象(如图6所示)。对极片表面进行X射线光电子能谱(XPS)分析,以及对极片进行半电池测试则能够定性和定量分析极片表面SEI和容量损失。最后总结得出定性或定量的失效原因,并提供分析报告。锂电池失效机理研究是通过大量基础科研,以及构建合理模型和验证实验, 准确模拟分析电池内部复杂的物理化学反应过程, 找出电池失效的本质原因,构建失效原因数据库。