定制热线: 400-678-3556

宝鄂百科

提高锂离子电池的高温性能意义是什么?

来源:宝鄂实业    2019-09-08 11:32    点击量:
 
1 热失控原因分析
 
锂离子电池的热失控主要是因电池内部温度上升而起。目前商业锂离子电池中应用最广的电解液体系是LiPF6 的混合碳酸酯溶液,此类溶剂挥发性高、闪点低、非常容易燃烧。当冲撞或者变形引起的内部短路,大倍率充放电和过充,就会产生大量的热,导致电池温度上升。当达到一定温度时,就会导致一系列分解反应,使电池的热平衡受到破坏。当这些化学反应放出的热量不能及时疏散,便会加剧反应的进行,并引发一连串的自加热副反应。电池温度急剧升高,也就是“热失控”,最终导致电池的燃烧,严重时甚至发生爆炸[2-3] 。
 
总的来说,锂离子电池热失控原因主要集中在电解液的热不稳定性,以及电解液与正、负极共存体系的热不稳定性两个大的方面[4]。
 
目前从大的方面来看,安全型锂离子电池主要从外部管理和内部设计两个方面来采取措施,控制内部温度、电压、气压来达到安全目的。
 
2 解决热失控的策略
 
2.1 外部管理
 
1)PTC(正温度系数)元件:在锂离子电池中安装PTC 元件,其综合考虑了电池内部的压力和温度,当电池因过充而升温时,电池内阻迅速提高从而限制电流,使正负极之间的电压降为安全电压,实现对电池的自动保护功能[2,4]。
 
2)防爆阀:当电池由于异常导致内压过大时,防爆阀变形,将置于电池内部用于连接的引线切断,停止充电。
 
3)电子线路:2~4 节的电池组可以预埋电子线路设计锂离子保护器,避免过充及过放电,从而避免安全事故发生,延长电池寿命[4]。
 
当然这些外部控制方法都有一定效果,但这些附加装置增加了电池的复杂性和生产成本,也不能彻底解决电池安全性问题。因此,有必要建立一种内在的安全保护机制。
 
2.2 改进电解液体系
 
电解液作为锂离子电池的血液,电解液的性质直接决定了电池的性能,对电池的容量、工作温度范围、循环性能及安全性能都有重要的作用[2-5]。目前商用锂离子电池电解液体系,其应用最广泛的组成是LiPF6、碳酸乙烯酯和线性碳酸酯。前面两个是不可或缺的成分,它们的使用也产生了电池性能方面某些局限,同时电解液中使用了大量低沸点、低闪点的碳酸酯类溶剂,在较低的温度下即会闪燃,存在很大的安全隐患[5]。因此,许多研究者尝试改进电解液体系以提高电解液的安全性能。在电池的主体材料(包括电极材料、隔膜材料和电解质材料)在短时间内不发生颠覆性改变的情况下,提高电解液的稳定性是增强锂离子电池安全性的一条重要途径[4-5]。
 
2.2.1 功能添加剂 功能添加剂具有用量少、针对性强的特点。
 
即在不增加或基本不增加电池成本、不改变生产工艺的情况下能显著改善电池的某些宏观性能。因此,功能添加剂成为当今锂离子电池领域一个研究热点,是解决目前锂离子电池电解液易燃问题最有希望的途径之一[5]。添加剂的基本作用就是阻止电池温度过高和将电池电压限定在可控范围内。因此,添加剂的设计也是从温度和充电电位发挥作用的角度进行考虑的[4]。
 
阻燃添加剂:阻燃添加剂又可以根据阻燃元素的不同分为有机磷系阻燃添加剂、含氮化合物阻燃添加剂、卤代碳酸酯类阻燃添加剂、硅系阻燃添加剂以及复合阻燃添加剂5个主要类别[6]。
 
有机磷化物阻燃剂:主要包括一些烷基磷酸酯、烷基亚磷酸酯、氟化磷酸酯以及磷腈类化合物。阻燃机理主要是阻燃分子干扰氢氧自由基的链式反应也称为自由基捕获机制。添加剂气化分解释放出含磷自由基,该自由基具有捕获体系中氢自由基终止链式反应的能力[6]。
 
磷酸酯类阻燃剂:主要有磷酸三甲酯、磷酸三乙酯(TEP)、磷酸三丁酯(TBP)等[7]。磷腈类化合物如六甲基磷腈(HMPN),烷基亚磷酸酯如亚磷酸三甲酯(TMPI)、三-(2,2,2-三氟乙基)、亚磷酸酯(TT⁃ FP),氟化磷酸酯如三-(2,2,2-三氟乙基)磷酸酯(TFP)、二-(2,2,2-三氟乙基)-甲基磷酸酯(BMP)、(2,2,2-三氟乙基)-二乙基磷酸酯(TDP)、苯辛基磷酸盐(DPOF)等都是良好的阻燃添加剂。磷酸酯类通常粘度比较大、电化学稳定性差,阻燃剂的加入在提高电解液阻燃性的同时也对电解液的离子导电性和电池的循环可逆性造成了负面影响。
 
其解决方法一般是:①增加烷基基团的碳含量;②芳香(苯基)基团部分取代烷基基团;③形成环状结构的磷酸酯。
 
有机卤代物类(卤代溶剂):有机卤代物阻燃剂主要是指氟代有机物。非水溶剂中的 H 被 F 取代后,其物理性质会发生变化,如熔点降低、粘度降低、化学和电化学稳定性提高等。有机卤代物阻燃剂主要包括氟代环状碳酸酯、氟代链状碳酸酯和烷基-全氟代烷基醚等[8]。OHMI 等[7]对比氟代醚、氟代酯类含氟化合物研究表明,添加 33. 3%(体积分数)氟代化合物的0. 67 mol/L LiClO4/EC+DEC+PC(体积比 1∶1∶1)电解质具有较高的闪点,还原电位高于有机溶剂 EC、 DEC 和 PC,能在天然石墨表面快速生成SEI 膜,提高了首次充放电的库伦效率和放电容量。
 
氟代物本身并不具有像上文中所述阻燃剂的自由基捕获功能,仅仅起到稀释高挥发和易燃性共溶剂的作用,所以,只有当其在电解液中的体积比占大部分(>70%)时,电解液才不可燃[6-8]。
 
复合阻燃剂:目前用于电解液中的复合阻燃剂有P-F 类化合物和N-P 类化合物[8],代表性物质主要有六甲基磷酰胺(HMPA),氟代磷酸酯等。阻燃剂通过两种阻燃元素的协同作用发挥阻燃效果。
 
FEI 等[9]提出两种N-P阻燃剂MEEP和MEE,其分子式如图1所示。LiCF3SO3/MEEP∶PC=25∶75,电解质可减少90%的可燃性,同时电导率可以达到2. 5 × 10-3 S/cm。
 
2)过充添加剂:在锂离子电池过度充电时,会发生一系列的反应。电解液组分(主要是溶剂)在正极表面发生不可逆的氧化分解反应,产生气体并释放大量热量,从而导致电池内压增加和温度升高,给电池的安全性带来严重影响[2,4,8]。从作用机理上,过充保护添加剂主要分为氧化还原穿梭电对型和电聚合型两种。从添加剂类型上又可分为锂的卤化物、金属茂化合物。目前进入规模应用的过充添加剂主要有联苯(BP)和环己基苯(CHB)
 
对于氧化还原类防过充添加剂,其原理是当充电电压超过电池正常的截止电压时,添加剂开始在正极发生氧化反应,氧化产物扩散到负极,发生还原反应[2,4,10]。氧化还原对就在正负极之间穿梭,吸收多余的电荷。其代表性的物质有二茂铁及其衍生物,亚铁离子的2,2-吡啶和1,10-邻菲咯啉的络合物,噻蒽衍生物[2,10]。