定制热线: 400-678-3556

宝鄂文库

是什么导致18650电池短路?这里有几点原因你可能需要注意!

来源:宝鄂实业    2019-04-24 10:32    点击量:

为了避免锂离子电池在挤压试验中发生热失控,提高锂离子电池的安全性,就需要对锂离子电池在挤压试验中发生热失控的机理,进行深入的研究,从而对锂离子电池进行针对性的安全设计,从而提升锂离子电池在挤压试验中的安全性。

 

18650电池主要由三部分组成:安全阀、卷芯和低碳钢外壳。安全阀通常由正温度系数材料、铝安全阀和不锈钢正极端子、气体密封垫等组成,电芯由正极、负极和隔膜组成,在本试验中正极的活性物质的成分为LiCoO2。轴向载荷的加载速度为5mm/min,所有的试验电池在试验之前都已经完全放电(SOC=0)。测试结果显示,18650电池在轴向压力测试中压力呈现出缓慢上升——快速上升——轻微下降——快速上升的趋势,而电压测试显示,18650电池在变形达到4mm的情况下才会发生失效,而且通过试验发现,18650电池的电压突降主要是由于电池内部短路造成的,而不是内部结构的断路。为了研究18650在轴向压力下失效的机理,JunerZhu还利用有限元软件对其进行了分析,模型中的材料主要采用了弹塑性模型,并且考虑了各种材料的各向异性的特点,模型中包涵了上百万的计算单元,轴向载荷的加载速度被设置为1m/s。仿真结果再现了在轴向载荷的情况下,18650电池变形的经过。首先电池的上盖区域的壳体开始发生塑性变形,在变形程度超过1mm后,变形的外壳开始挤压电池卷芯的上部,随着变形程度的增加,电芯开始出现变形,从而在压力曲线上出现了一个轻微的下降,然后随着电池壳体与电芯的接触面积的增加,使得压力曲线呈现了一个快速上升的趋势。CT扫描结果也很好的验证了上述分析,试验电池的变形主要发生在上部结构中,电池下改几乎没有发生变形。

 

对试验后的18650电池进行拆解显示,虽然电芯发生了严重的变形,但是正负极并没有发生断裂,反而是隔膜在距离上部边缘1.3mm的位置出现了一个裂缝,这直接导致了电池发生短路,电压突降,而这一裂缝可能是由于金属箔锋利的边缘侵入造成的。此外隔膜的在一些位置厚度出现了很大的下降,这主要是由于凹陷的外壳挤压电芯造成的。

 

从上述分析结果来看,轴向压力下导致18650电池短路的可能原因主要有以下几点:

 

1.外壳通过破裂的隔膜与正负极接触

 

2.正负极通过破裂的隔膜接触

 

3.正负极通过隔膜变薄的区域接触

 

4.安全阀被挤压,与电芯接触

 

同事专家还表示,手机厂商非常关注电池的体积能量密度。“几乎所有厂商都在追求在有限的体积内装进更多的电能,以延长续航能力。”

 

但是,业内共识,电池能量密度的提升需要一个长期的过程。专家解释:“储能行业和电子行业的发展规律有很大不同:后者是广为人知的摩尔定律,集成电路芯片中可容纳晶体管数目成指数增长,大约每18个月就能提高一倍;而电池性能的提升过程是台阶形的,在现有电池材料基础上,能量密度每年能有2%—3%的提升已经相当不错。”因此,电子产品的性能提升与电池的能量密度提升之间存在一个剪刀差,并且随着时间不断扩大。

 

专家坦言,目前手机电池的能量密度已经逼近“极限”,厂商为了能在更小的体积内提供更多的能量,只能想方设法挤压辅助材料所占的空间,给电池“瘦身”。可是,“瘦身”与“安全”在手机锂电池上却难以兼得。

 

那么问题来了,上文说的锂电池密度到底是什么鬼?到底对电池行业的影响有多大?

 

电池密度其实就是电池的平均单位体积或质量所释放出的电能。电池能量密度=电池容量x放电平台/电池厚度/电池宽度/电池长度。

 

可以说,能量密度是制约当前锂离子电池发展的最大瓶颈。不管是手机,还是电动汽车,人们都期待电池的能量密度能够达到一个全新的量级,使得产品的续航时间或续航里程不再成为困扰产品的主要因素。

 

针对能量密度成为瓶颈的现状,全球各国都制订了相关的电池产业政策目标,期望引领电池行业在能量密度方面取得显著的突破。中、美、日等国政府或行业组织所制定的2020年目标,基本上都指向300Wh/kg这一数值,相当于在当前的基础上提升接近1倍。2030年的远期目标,则要达到500Wh/kg,甚至700Wh/kg,电池行业必须要有化学体系的重大突破,才有可能实现这一目标。