定制热线: 400-678-3556

宝鄂文库

全固态锂电池拥有哪些特点?为什么会有超长的循环寿命?

来源:宝鄂实业    2019-04-24 23:49    点击量:

随着全球化石能源的日趋枯竭及其使用带来的环境恶化问题,开发和使用绿色、可再生能源已成为当今世界各国可持续发展的重要战略之一,而与之相对应的大规模储能技术的开发已迫在眉睫。在现有的储能技术中,锂离子电池具有能量密度高、工作电压高、使用寿命长以及无记忆效应等优势,已经广泛的应用于手机、数码相机及笔记本电脑等消费类电子产品,并在电动汽车、大规模储能等领域有广阔的应用前景。然而,当前商用锂离子电池由于采用易燃的液态有机电解液,存在安全隐患,在过充放电、短路等非正常环境下会引起电池的燃烧甚至爆炸,对人身健康和关键设备的安全造成威胁,是目前亟需解决的关键问题之一。采用固态电解质替代有机液态电解液,制备全固态锂电池是解决当前锂离子电池安全问题的根本途径。此外,全固态锂电池在提高电池能量密度、拓宽工作温度区间、延长使用寿命等方面有着极大的优势:①采用金属锂作为负极有望显著提高电池的能量密度,并且使高容量无锂正极的使用成为可能;②固态电解质相比液态电解质具有更宽的电化学稳定窗口,使得高电压的正极使用成为可能,可实现锂离子电池的极限能量密度;③固态电解质相比液态电解质具有更宽的工作温度范围;④固态电解质的使用,可以避免液态有机电解液形成SEI时的消耗以及电极材料在电解液中的副反应、溶解,因而可实现更好的可逆性和更长的循环寿命[3]。然而,体型固态锂电池由粉体压制或烧结而成,电极与电解质之间易存在大量的气-固界面,非紧密的接触易导致较大的界面电阻。界面失配也是造成电池阻抗的主要原因,界面问题因而成为阻碍固态锂电池发展的最关键技术问题。而薄膜型全固态锂电池,采用一种全新的制备方式,通过镀膜技术将材料气化并以原子或分子沉积的方式成膜,能有效解决固固界面的微观缺陷,实现固固界面的致密结合,为锂离子电池开辟了新的发展方向。本文将对薄膜型全固态锂电池的工作原理及特点、关键材料以及国内外具有代表性的产业化及研究进展进行介绍,并展望薄膜型全固态锂电池技术未来的发展趋势。

 

薄膜型全固态锂电池的特点

 

薄膜型全固态锂电池是在传统锂离子电池的基础上发展起来的一种新型结构的锂离子电池。其基本工作原理与传统锂离子电池类似,即在充电过程中Li+从正极薄膜脱出,经过电解质在负极薄膜发生还原反应;放电过程则相反。薄膜锂电池在结构上使用固态电解质层取代了传统锂离子电池原有的电解液和隔膜,由致密的正极、电解质、负极薄膜在衬底上叠加而成,并且在加工制备、电化学特性等方面有着显著的差异。在加工制备方面,商用锂离子电池多采用涂布、喷涂等方法,体型固态锂电池多采用涂布、挤压、高温烧结等工艺。而薄膜型全固态锂电池通常使用磁控溅射、脉冲激光沉积、热蒸发等镀膜方法或者化学气相沉积、溶胶-凝胶等合成方法成膜。基于以上制备工艺,薄膜型全固态锂电池的电极薄膜十分致密,与体型固态电池的多孔电极相比,电极材料的利用率可有效提高。此外,由于薄膜锂电池的电解质和电极在制备时为原子或分子簇团叠加成膜,与体型固态电池相比可以更有效地解决固-固界面上的微观缺陷,实现完美结合的固-固界面。在性能方面,薄膜锂电池除具有提高电池能量密度、拓宽工作温度区间、延长使用寿命等固态电池的优点外,与体型固态锂电池相比,还具有以下特点:①电极/电解质界面接触良好,具有极薄电解质层,可实现快速充放电;②电极材料更为致密,可实现更高的能量密度,更低的自放电率(<1%每年),并具有超长的循环寿命(文献报道最长达40000次,容量保持95%)[8];③电池可设计性更高,体积小,与半导体生产工艺匹配,可在电子芯片内集成。然而,由于受镀膜工艺的限制,目前薄膜电极厚度通常为微米级,存在着单位面积比容量较低的缺点。基于以上特性,薄膜型全固态锂电池可广泛的应用于智能卡、电子标签、集成电路等领域,被认为是微电子系统电源供应中唯一可用的能源器件以及可穿戴电子设备的理想电源,还可以应用于可植入医疗器件、航天航空等特殊领域。