定制热线: 400-678-3556

宝鄂文库

薄膜型固态电池的关键部位材料都有哪些?

来源:宝鄂实业    2019-04-24 23:50    点击量:

薄膜型全固态锂电池的关键材料

 

电极和电解质材料是决定薄膜锂电池电化学性能的关键,薄膜锂电池的关键材料主要包括正极膜、电解质膜以及负极膜。

 

电解质薄膜

 

在薄膜型全固态锂电池中,电解质起着至关重要的作用,直接影响到薄膜电池的充放电倍率、循环寿命、自放电、安全性以及高低温性能。因此,固态电解质薄膜要求具有高的离子电导率、低的电子电导率、宽的电位窗口以及较好的化学和机械稳定性。对于电解质薄膜的研究主要集中在非晶电解质材料上。BATES等以Li3PO4为靶材在纯氮气下利用磁控溅射制备出性能良好的非晶态无机电解质薄膜-锂磷氮氧化物(LiPON),室温离子电导率可达6.4×10-6S/cm,电化学窗口可达5.5V(vs.Li/Li+),可有效抑制锂枝晶的形成,并具有优良的循环稳定性。LiPON薄膜同样具有较强的机械稳定性和致密性,不易造成短路,因此成为目前薄膜型全固态锂电池研究及应用的主要采用对象。之后,围绕LiPON体系开展了一系列的研究工作,绝大部分非晶电解质薄膜的电导率在10-7~10-5S/cm。为了进一步提高LiPON的离子电导率,LEE等利用(1-x)Li3PO4·xLi2SiO3靶材在氮气环境下制备出Li-Si-P-O-N氮氧化物电解质薄膜,离子电导率最高可达1.24×10-5S/cm,是一种非常具有前景的薄膜型电解质材料。近期,新型高离子电导率的固态电解质材料如反钙钛矿、钙钛矿、NASICON以及石榴石结构的电解质引起了很多研究者的兴趣。人们通过对其离子传输机制、制备工艺以及改性原理的研究,探索了这些新型的电解质薄膜在薄膜锂电池中的应用。ZHAO等通过磁控溅射制备了La0.56Li0.33TiO3薄膜,并对其进行了不同温度的退火处理,发现加热到300℃时尚未出现结晶相,薄膜离子电导率达到5.25×10-5S/cm。但当继续加热出现结晶相后,各向异性通道阻碍离子传输进行,离子电导率急剧下降。LV等-使用LiO2和LiCl粉末简单混合制备靶材,利用脉冲激光沉积技术(PLD)在Si以及不锈钢等不同基底上制备出了Li3OCl结晶态薄膜,室温下离子电导率可以达到2×10-4S/cm。分别以LiCoO2、Li3OCl、石墨为正极,电解质、负极组装成的薄膜型全固态锂电池,容量可达120mA·h/g。ZHAO课题组-首次以Li1.3Al0.3Ti1.7(PO4)3为靶材,利用磁控溅射在导电基底ITO上制备出NASICON结晶态的电解质薄膜,离子电导率可达2.46×10-5S/cm。HIRRAYAMA等-利用脉冲激光沉积技术(PLD)在特殊基底Gd3Gd5O12上外延生长出Al掺杂的Li7La3Zr2O12(LLZO)结晶态薄膜,其室温电导率最高可达1×10-5S/cm。尽管晶态电解质薄膜通常比非晶态的电解质薄膜具有更高的离子电导率,但其镀膜过程通常需要高温,导致电极材料与电解质材料界面处易发生反应,影响薄膜锂电池的性能。而且,与非晶态电解质相比,晶态电解质与金属锂负极的界面结合性、稳定性较差,易形成较高的界面电阻,难以构建高性能的薄膜锂电池。因此,目前来看薄膜型全固态锂电池的性能提升仍依赖于具有高离子电导率的新型非晶态电解质薄膜的开发。

 

正极薄膜

 

薄膜型全固态锂电池最早使用的正极材料主要是无锂正极,包括TiS2、MoO3和V2O5等。然而,这类正极薄膜电位较低、循环性能较差,随后逐渐被含锂层状化合物材料LiCoO2、橄榄石结构的LiFePO4以及尖晶石结构的LiMn2O4等高性能正极材料所取代。由于具有高的比容量和十分稳定的循环性能等优点,层状结构的LiCoO2是最早应用到商业化锂离子电池的正极材料,也是薄膜锂电池中最常用的正极。通常情况,LiCoO2只有在高温退火后才能得到高性能的层状结构(HT-LiCoO2)。然而,高温退火过程容易造成薄膜开裂、脱落,导致薄膜电池形成微短路,且高温过程与半导体工艺不匹配,难以实现电池的电路集成。PARK等通过对基底施加偏压,不需要退火就能得到比容量为68μA·h/(cm2·μm)的LiCoO2薄膜。CHIU等利用磁控溅射与电感耦合等离子体源(ICP)结合来降低薄膜的表面应变能,可以在350℃下得到结晶度良好的LiCoO2薄膜,比容量可达110mA·h/g。低温获得的高性能LiCoO2薄膜可以极大降低薄膜型全固态锂电池的制备工艺难度,对基于薄膜型全固态锂电池的电路集成意义重大。