什么才是真正的锂空气电池?它是怎样工作的?
来源:宝鄂实业
2019-05-30 10:09
点击量:次
传统锂离子电池能量密度(~250Wh/kg)的不足严重制约了电动汽车的进一步实用性的发展,锂-氧气/空气电池因具有比传统锂电池高出约十倍的理论容量和能量密度(约2000Wh/kg),被认为是一代所谓“终极”化学电源。正如其名,锂空气电池利用金属锂与空气中的氧反应产生的能量来转化为电能,这种好似生物呼吸的充放电过程也让这种电池得名“呼吸电池”。因为氧来自空气而无需预存在电池系统中,金属锂又具有较低的密度,所以锂空气电池的理论能量密度要远超过锂离子电池。这意味着,电动汽车可以使用更小巧轻便的电池,同时续航能力还可超越传统燃油汽车。但是,锂空电池正极的氧还原/氧析出(ORR/OER)反应动力学极其缓慢,严重制约了锂空气电池的实际应用,因此,设计、开发具有氧还原/氧析出双重催化功能的高效电催化剂体系以促进ORR/OER进程是目前锂空气电池亟待解决的关键问题之一。传统的块状钴基氧化物Co3O4催化剂存在比表面积小、导电性差、充放电极化大等问题,Prof.XiangfengLiu等人[8]设计了一种同步热分解的方法,以普鲁士蓝类似物作为前驱体,对含有Ag、Co的普鲁士蓝纳米球进行煅烧分解,成功的制备了具有多孔核壳结构的Co3O4@Co3O4/Ag复合催化剂。前驱体中的Ag经过煅烧后主要以三种形式存在:Co3O4表面附着的Ag单原子和Ag团簇、Co3O4表面负载的Ag纳米颗粒以及掺入Co3O4晶格中的Ag。研究发现,这三种存在形式的Ag不仅可以形成更多活性位点,而且可增强Ag-Co3O4界面的结合,同时Ag掺杂改善了Co3O4的电子结构,催化活性得到进一步提高。
锂空气电池,其实空气中不只含有氧气,还有其他各种气体,比如氮气、二氧化碳、水蒸气等等,但二氧化碳和水蒸气会与电池中的锂发生反应,产生的副产物会覆盖电极,使其很快丧失活性甚至引起电池短路。这一问题让不少锂空气电池不得不只能在纯氧环境中工作,从“锂空气电池”变成“锂氧气电池”。最近AminSalehi-Khojin和LarryA.Curtiss等人[10]在Nature上报道了一种能够在空气中工作的长寿命锂空气电池。他们对正极材料使用二硫化钼纳米片材料,电解质使用离子液体1-乙基-3-甲基咪唑鎓四氟硼酸盐(EMIM-BF4)和二甲亚砜(DMSO)混合物,另一方面,他们创新性的通过锂和二氧化碳的电化学反应制备碳酸锂/炭保护层沉积在锂负极上,对金属锂负极进行碳酸锂/炭的涂层保护。他们模拟空气氛围并进行电池测试,700次充放电循环中没有发生任何故障,而没有碳酸锂/炭保护层的锂负极,仅仅只能循环11次。Prof.AminSalehi-Khojin称它是真正的锂空气电池。
便携式电子设备、电动汽车和储能电网的快速发展亟需开发具有高能量密度的二次电池。金属锂二次电池,因金属锂具有高理论比容量(3860mAh/g)、低密度(0.59g/cm3)和最低的还原电位(相对于标准氢电位为?3.04V)等优点,使其成为一种极具应用前景的高比能二次电池。然而,金属锂负极表面在重复的充放电过程中会形成枝晶,枝晶断裂会形成“死锂”,导致电池库仑效率降低,循环性能变差,造成电池内部短路,甚至引发火灾或爆炸,存在很多安全隐患,严重阻碍了其应用发展,因此科学家们就如何有效抑制锂枝晶的形成做了很多研究。Prof.BingqingWei和KeyuXie等人[11]发现多孔介质的曲折孔隙可以抑制树枝状锂的生长,并合成了一种新型多孔的α-Si3N4亚微米线膜,将其覆盖在传统负极集流体铜箔表面,实现了锂金属的均匀沉积,并大大提升锂金属电池的循环稳定性和安全性。
针对金属锂负极表面在重复的充放电过程中形成枝晶的问题,科学家还提出利用其他金属(包括镁)代替锂作为电池负极不会形成树突的思路,而且镁在地壳中含量丰富,约为13.9%;镁负极的体积比容量高,为3833mAh/cm3,是锂金属的两倍。但是镁电池发展较为缓慢,主要是因为其正极材料不好匹配,Mg2+的固相扩散十分缓慢,难以找到适合其储存的正极嵌入材料,寻找高比容量与工作电压的正极材料成为发展镁电池的关键。但是之前的研究中,虽然镁电池可以获得比较高的比容量,但是电极均需在60℃的高温下工作。Prof.SokPantelides等人[14]报道了一种以MgCl+为嵌入阳离子的镁电池,以PY14+离子原位扩层的二维层状TiS2材料为正极、镁金属为负极、传统的含氯镁电解液(APC)为电解质(图5)。以单价的MgCl+代替二价的Mg2+作为嵌入离子,离子嵌入时仅发生简单的去溶剂化(Ea~0.8eV)过程,Mg-Cl键不发生断裂,且相比于Mg2+,MgCl+的固相扩散能垒显著降低(~0.18eV)、扩散速率大幅度提高,从而有效克服上述难题,该电池在60℃下可以获得高达400mAh/g的可逆比容量,在室温条件下可以获得240mAh/g的可逆容量并且具有优异的循环性能。
锂空气电池,其实空气中不只含有氧气,还有其他各种气体,比如氮气、二氧化碳、水蒸气等等,但二氧化碳和水蒸气会与电池中的锂发生反应,产生的副产物会覆盖电极,使其很快丧失活性甚至引起电池短路。这一问题让不少锂空气电池不得不只能在纯氧环境中工作,从“锂空气电池”变成“锂氧气电池”。最近AminSalehi-Khojin和LarryA.Curtiss等人[10]在Nature上报道了一种能够在空气中工作的长寿命锂空气电池。他们对正极材料使用二硫化钼纳米片材料,电解质使用离子液体1-乙基-3-甲基咪唑鎓四氟硼酸盐(EMIM-BF4)和二甲亚砜(DMSO)混合物,另一方面,他们创新性的通过锂和二氧化碳的电化学反应制备碳酸锂/炭保护层沉积在锂负极上,对金属锂负极进行碳酸锂/炭的涂层保护。他们模拟空气氛围并进行电池测试,700次充放电循环中没有发生任何故障,而没有碳酸锂/炭保护层的锂负极,仅仅只能循环11次。Prof.AminSalehi-Khojin称它是真正的锂空气电池。
便携式电子设备、电动汽车和储能电网的快速发展亟需开发具有高能量密度的二次电池。金属锂二次电池,因金属锂具有高理论比容量(3860mAh/g)、低密度(0.59g/cm3)和最低的还原电位(相对于标准氢电位为?3.04V)等优点,使其成为一种极具应用前景的高比能二次电池。然而,金属锂负极表面在重复的充放电过程中会形成枝晶,枝晶断裂会形成“死锂”,导致电池库仑效率降低,循环性能变差,造成电池内部短路,甚至引发火灾或爆炸,存在很多安全隐患,严重阻碍了其应用发展,因此科学家们就如何有效抑制锂枝晶的形成做了很多研究。Prof.BingqingWei和KeyuXie等人[11]发现多孔介质的曲折孔隙可以抑制树枝状锂的生长,并合成了一种新型多孔的α-Si3N4亚微米线膜,将其覆盖在传统负极集流体铜箔表面,实现了锂金属的均匀沉积,并大大提升锂金属电池的循环稳定性和安全性。
针对金属锂负极表面在重复的充放电过程中形成枝晶的问题,科学家还提出利用其他金属(包括镁)代替锂作为电池负极不会形成树突的思路,而且镁在地壳中含量丰富,约为13.9%;镁负极的体积比容量高,为3833mAh/cm3,是锂金属的两倍。但是镁电池发展较为缓慢,主要是因为其正极材料不好匹配,Mg2+的固相扩散十分缓慢,难以找到适合其储存的正极嵌入材料,寻找高比容量与工作电压的正极材料成为发展镁电池的关键。但是之前的研究中,虽然镁电池可以获得比较高的比容量,但是电极均需在60℃的高温下工作。Prof.SokPantelides等人[14]报道了一种以MgCl+为嵌入阳离子的镁电池,以PY14+离子原位扩层的二维层状TiS2材料为正极、镁金属为负极、传统的含氯镁电解液(APC)为电解质(图5)。以单价的MgCl+代替二价的Mg2+作为嵌入离子,离子嵌入时仅发生简单的去溶剂化(Ea~0.8eV)过程,Mg-Cl键不发生断裂,且相比于Mg2+,MgCl+的固相扩散能垒显著降低(~0.18eV)、扩散速率大幅度提高,从而有效克服上述难题,该电池在60℃下可以获得高达400mAh/g的可逆比容量,在室温条件下可以获得240mAh/g的可逆容量并且具有优异的循环性能。