如何改进锂离子二次电池的性能?
来源:宝鄂实业
2019-08-19 22:26
点击量:次
改进锂离子二次电池性能的几个问题
2.1提高电池容量
对于Li+插入化合物LixMe,理论电容量可按下试计算:
C=xF/3.6M(mAh/g)(2)
式中:F为法拉第常数;M为活性物质MnYm的化学式量。对负极LixC6,当x=1时,理论容量为372mAh/g,较之以锂为负极时低50%,但RCB的安全性及快充特性弥补了这一不足。
对于正极CoO2、NiO2、Mn2O4、Cr3O8等,在4V(vsLi+/Li)时可以可逆嵌脱Li+,CoO2及NiO2可脱出锂量为0.5mol,Li1+xMn2O4可脱出Li+1mol。由计算知,三者理论容量以CoO2最大,Mn2O4较小(148mAh/g),但三者相差不大,且都远小于碳负极。
2.2电池寿命
电池寿命是评价电池优劣的一个重要指标,一般以电池容量降低到某一特定值的充、放电循环次数来度量。电池寿命与电极材料、电解质种类及配比、充放电速率、放电深度和温度等有关。可逆性好,充、放电循环中结构变化小的电极材料可使电池的寿命长;锂盐的选择和溶剂的配比可影响SEI膜的质量,凡可提高SEI膜的质量者则又利于延长电池寿命;若在初次充电中电压未达到Li+的嵌入电压之前SEI膜就已形成,则电极的稳定性就提高;加入添加剂、低速率放电利于延长电池寿命;在低温下,SEI膜形成慢,以溶剂还原为主,锂盐的还原速度变慢,溶剂还原产物的沉积更为有序致密,电极钝化更有效,利于延长电池的寿命。
2.3安全性
RCB电池并不是完全消除了安全性问题,不合理的工况也可破坏电池体系。
首先,SEI膜的生成消除了枝晶锂的生长条件,降低了电池过热或短路的机会,但放电太深可使负极达到锂的析出电位,沉积同样也可发生,这时正极中的Li+向电解液中逸出,为此,在锂沉积前应控制生成SEI膜。其次,在过充状况时,电压太高,导致电解质分解,产生气体和其他不安全的副反应。表3列出一些溶剂的分解电压值,可见EC-DMC(1∶1)可以稳定在5V以上。
2.4自放电
自放电速率决定于SEI膜的特性和电池的密封状况,凡可促进SEI膜的形成和稳定的因素都利于降低电池的自放电率,选择好的隔膜也利于消除自放电。
自放电机理可认为是:电解质中溶剂在负极催化作用下获得电子被还原,而负极上的锂以Li+形式脱出或进入电解质中,移向正极并嵌入正极材料中。前者的速率决定于负极的表面催化活性,与负极的比表面积成正比,故应减少可使负极表面积增大的因素;后者速率则依赖于Li+嵌入正极中的动力学因素及正极材料的粒度。
2.1提高电池容量
对于Li+插入化合物LixMe,理论电容量可按下试计算:
C=xF/3.6M(mAh/g)(2)
式中:F为法拉第常数;M为活性物质MnYm的化学式量。对负极LixC6,当x=1时,理论容量为372mAh/g,较之以锂为负极时低50%,但RCB的安全性及快充特性弥补了这一不足。
对于正极CoO2、NiO2、Mn2O4、Cr3O8等,在4V(vsLi+/Li)时可以可逆嵌脱Li+,CoO2及NiO2可脱出锂量为0.5mol,Li1+xMn2O4可脱出Li+1mol。由计算知,三者理论容量以CoO2最大,Mn2O4较小(148mAh/g),但三者相差不大,且都远小于碳负极。
2.2电池寿命
电池寿命是评价电池优劣的一个重要指标,一般以电池容量降低到某一特定值的充、放电循环次数来度量。电池寿命与电极材料、电解质种类及配比、充放电速率、放电深度和温度等有关。可逆性好,充、放电循环中结构变化小的电极材料可使电池的寿命长;锂盐的选择和溶剂的配比可影响SEI膜的质量,凡可提高SEI膜的质量者则又利于延长电池寿命;若在初次充电中电压未达到Li+的嵌入电压之前SEI膜就已形成,则电极的稳定性就提高;加入添加剂、低速率放电利于延长电池寿命;在低温下,SEI膜形成慢,以溶剂还原为主,锂盐的还原速度变慢,溶剂还原产物的沉积更为有序致密,电极钝化更有效,利于延长电池的寿命。
2.3安全性
RCB电池并不是完全消除了安全性问题,不合理的工况也可破坏电池体系。
首先,SEI膜的生成消除了枝晶锂的生长条件,降低了电池过热或短路的机会,但放电太深可使负极达到锂的析出电位,沉积同样也可发生,这时正极中的Li+向电解液中逸出,为此,在锂沉积前应控制生成SEI膜。其次,在过充状况时,电压太高,导致电解质分解,产生气体和其他不安全的副反应。表3列出一些溶剂的分解电压值,可见EC-DMC(1∶1)可以稳定在5V以上。
2.4自放电
自放电速率决定于SEI膜的特性和电池的密封状况,凡可促进SEI膜的形成和稳定的因素都利于降低电池的自放电率,选择好的隔膜也利于消除自放电。
自放电机理可认为是:电解质中溶剂在负极催化作用下获得电子被还原,而负极上的锂以Li+形式脱出或进入电解质中,移向正极并嵌入正极材料中。前者的速率决定于负极的表面催化活性,与负极的比表面积成正比,故应减少可使负极表面积增大的因素;后者速率则依赖于Li+嵌入正极中的动力学因素及正极材料的粒度。