定制热线: 400-678-3556

电池博客

当粉尘严重到刺穿隔膜时,对锂动力电有什么影响

来源:宝鄂实业    2019-04-01 12:44    点击量:
但是当粉尘严重到刺穿隔膜这个“度”时,对锂动力电的影响就会非常明显。由于有是否刺穿隔膜这个“度”的存在,因此在测试大批锂动力电自放电率时,经常会发现大部分锂动力电的自放电率都集中在一个不大的范围内,而只有小部分锂动力电的自放电明显偏高且分布离散,这些应该就是隔膜被刺穿的锂动力电。

2)毛刺。将微短路的锂动力电池拆开,当发现锂动力电池的隔膜上出现的黑点处于边缘位置占多数,便是极片分切过程中产生的毛刺引起的。在锂动力电池电芯生命初期,只表现为自放电较高,而时间越长,其造成正负极大规模短路的可能性越大,是锂动力电池热失控的一个重要成因。

3)正极金属杂质。正极的金属杂质经过充电反应后,也是击穿隔膜,在隔膜上形成黑点,造成了物理微短路的原因。一般来说,只要是金属杂质,都会对锂动力电池自放电产生较大影响,一般是金属单质影响最大。据部分文献所述,影响排序如:Cu>Zn>Fe>Fe2O3。比如很多正极铁锂材料就会面临自放电过大的问题,也就是铁杂质超标引起的。

4)负极金属杂质。由于原电池的形成,负极金属杂质会游离出来,在隔膜处沉积而造成隔膜导通,形成物理微短路,某些低端的负极材料经常会遇见这样的情况。负极浆料中的金属杂质对自放电的影响力不及正极中的金属杂质,其中Cu、Zn对自放电影响较大。

5)辅材的金属杂质。例如CMC、胶带中的金属杂质。随着时间的增加,金属杂质引发的金属枝晶在不断生长,最后穿透隔膜,导致正负极的微短路,不断消耗电量,导致锂动力电池端电压降低。

(2)电化学材料的副反应

1)正极材料,主要是各类锂的化合物,其始终与电解液存在着微量的反应,环境条件不同,反应的激烈程度也不同。正极材料与电解液反应生成不溶产物,使得反应不可逆。参与反应的正极材料,失去了原来的结构,锂动力电池失去相应电量和永久容量。

正极与电解液发生的不可逆反应,主要发生于锰酸锂、镍酸锂这两种易发生结构缺陷的材料,例如锰酸锂正极与电解液中锂离子的反应:

LiyMn2O4+xLi++xe-→Liy+xMn2O4

2)负极材料,石墨负极原本就具备与电解液反应的能力,在化成过程中,反应产物SEI膜附着在电极表面,才使得电极与电解液停止了激烈的反应。若SEI膜有缺陷,这个反应也一直在少量进行。电解液与负极的反应,同时消耗电解液中的锂离子和负极材料。反应带来电量损失的同时,也带来锂动力电池最大可用容量的损失。

负极材料与电解液发生的不可逆反应,化成时形成的SEI膜就是为了保护负极不受电解液的腐蚀,负极与电解液可能发生的反应为:

LiyC6→Liy-xC6+xLi++xe-

3)电解液,电解液除了与正负极反应,还与自身材质中的杂质反应,与正负极材料中的杂质反应,这些反应均会生成不可逆的产物,使得锂离子总量减少,也是锂动力电池最大可用容量损失的原因。电解液自身所带杂质引起的不可逆反应有:

①溶剂中CO2可能发生的反应:

2CO2+2e-+2Li+→Li2CO3+CO

②溶剂中O2发生的反应:

1/2O2+2e+2Li+→Li2O

类似的不可逆反应消耗了电解液中的锂离子,进而损失了锂动力电池容量。

4)水分。水分造成电解液分解,释放出大量的电子,电子再嵌入到正极氧化结构中,从而引起正极电位下降,造成锂动力电池端电压下降。另外,当锂动力电池中有H2O存在时,其会与LiPF6反应,生产HF等腐蚀性气体;同时与溶剂等反应产生CO2等气体引起锂动力电池膨胀;HF会与电池中众多物质如SEI主要成分反应,破坏SEI膜;生成CO2和H2O等;CO2引起锂动力电池膨胀,重新生成的H2O又参与LiPF6、溶剂等反应,形成恶性链式反应。

产品相关推荐