简述电动汽车和能源存储用的锂离子电池
六氟磷酸锂(LiPF6)是目前商品锂离子电池中广泛使用的电解质锂盐。虽然它单一的性质并不是最优的,但是其综合性能是最有优势的。但是LiPF6 也有其缺点,例如,LiPF6 是化学和热力学不稳定的,会发生如下反应:
LiPF(6s)→LiF(s)+ PF(5g)
该反应生成的PF5 很容易进攻有机溶剂中氧原子上的孤对电子,导致溶剂的开环聚合和醚键裂解,这种反应在高温下分解尤其严重。
目前关于高温电解质盐的研究多集中在有机锂盐领域。代表性物质主要有硼基锂盐、亚胺基锂盐。LiB(C2O4)2(LiBOB)是近几年新合成的一种电解质盐,它具有很多优良性质,分解温度302 ℃ ,可以在负极形成稳定的 SEI 膜。改善石墨在PC 基电解液中的性能,但其黏度大,形成的SEI 膜的阻抗较大[14]。LiN(SO2CF3)2(LiTFSI)的分解温度在360 ℃以上,常温时的离子电导率略低于LiPF6,电化学稳定性好,氧化电位约为5. 0 V,是研究最多的有机锂盐,但它对Al 基集流体的腐蚀严重。
4 聚合物电解质
许多商品锂离子电池使用易燃易挥发的碳酸酯溶剂,若出现漏液很可能引起火灾。大容量、高能量密度的动力型锂离子电池尤为如此。而使用不可燃的聚合物电解质代替易燃的有机液态电解质,能够明显提高锂离子电池的安全性。
聚合物电解质,尤其是凝胶型聚合物电解质的研究已经取得了很大的进展。目前已经成功用于商品化锂离子电池中,按照聚合物主体分类,凝胶聚合物电解质主要有以下3 类:PAN 基聚合物电解质,PMMA 聚合物电解质,PVDF 基聚合物电解质。
但是凝胶型聚合物电解质其实是干态聚合物电解质和液态电解质妥协的结果,凝胶型聚合物电池仍然有许多工作要做。
3 正极材料
可以确定正极材料在充电状态电压高于4 V 时不稳定,易于在高温下发生热分解放出氧气,氧气与有机溶剂继续反应产生大量的热及其他气体,降低电池的安全性[2,17-19]。因此,正极与电解液反应被认为是热失控主要原因。对于正极材料,提高其安全性的常见方法为包覆修饰。如用 MgO、A12O3、SiO2、TiO2、ZnO、SnO2、ZrO2 等物质对正极材料进行表面包覆,可以降低脱Li+ 后正极与电解液的反应,同时减少正极的释氧,抑制正极物质发生相变,提高其结构稳定性,降低晶格中阳离子的无序性,从而降低循环过程中的副反应产热。
4 碳材料
目前对安全性要求更高的动力电池中通常使用具有较低的比表面积,较高的充放电平台,充电态活性较小,热稳定性相对较好安全性高的球形碳材料,如中间相碳微球(MCMB),或者尖晶石结构的Li9Ti5O12,其较层状石墨的结构稳定性更好[20]。目前提高碳材料性能的方法主要包括表面处理(表面氧化、表面卤化、碳包覆、包覆金属及金属氧化物、聚合物包覆)或者引入金属或者非金属进行掺杂。
5 隔膜
目前在商业锂离子电池中应用最广泛的隔膜依然是聚烯烃材料,其主要缺点就是高温下热缩以及电解液浸润性差。为了克服这些缺陷,研究人员尝试了很多办法,如寻找热稳定性材料代替,或者添加少量Al2O3 或 SiO2 纳米粉的隔膜,其不但具有普通隔膜的作用外,还具有提高正极材料的热稳定性的作用。
MIAO 等采用静电纺丝法制备的聚酰亚胺纳米无纺布隔膜。DSC 和 TGA 等表征手段显示其不但能够在500 ℃下保持热稳定,还相对Celgard 隔膜具有更好的电解液浸润性。
WANG 等制备出 Al2O3-PVDF 纳米级复合微孔膜,该复合微孔膜表现出良好的电化学性能和热稳定性能,满足锂离子电池隔膜的使用要求。
3 总结及展望
电动汽车和能源存储用的锂离子电池,其容量远大于小型电子设备,且使用环境更为复杂。综上所述,我们可以看出其安全性能远远还没解决,已经成为目前应用的技术瓶颈。后续工作需要深入到电池在非正常运行后可能导致的热效应,探求提高锂离子电池安全性能的有效途径。目前使用含氟溶剂和阻燃添加剂是开发安全型锂离子电池的主要方向,如何兼顾电化学性能和高温安全性将是未来研究重点。例如开发集P、N、F、Cl 于一体的高性能复合阻燃剂,开发高沸点、高闪点的有机溶剂,进而制备高安全性能的电解液。复合阻燃剂,双功能添加剂也会成为今后发展趋势。对于锂离子电池电极材料,因材料的表面化学性质不一,电极材料对充放电电位的敏感程度也不一致,不可能用一种或有限的几种电极/电解液/添加剂对所有电池结构设计。因此,今后应着力研究开发针对特定电极材料的不同电池体系。同时开发构建具有高安全性的聚合物锂离子电池体系或者开发具有单一阳离子导电和快离子输运以及高度热稳定性的无机固体电解质。此外,提高离子液体性能、开发简单廉价的合成工艺也是今后研究的重要内容。