锂电池研究中的EIS实验测量和分析方法有吗?合理的使用EIS可以提升电池的水平吗?
导读

电化学阻抗谱是一种重要的电化学测试方法,在电化学领域尤其是锂离子电池领域具有广泛的应用,如电导率、表观化学扩散系数、SEI的生长演变、电荷转移及物质传递过程的动态测量。本文介绍了电化学阻抗谱的基本原理、测试方法、测试注意事项、常用电化学阻抗测量设备及测试流程,并结合实际案例,具体分析了电化学阻抗谱在锂离子电池中的应用。
重点内容导读
1 电化学阻抗谱概述
2 实验原理
电化学阻抗谱(electrochemical impudence spectroscopy,EIS)是在电化学电池处于平衡状态下(开路状态)或者在某一稳定的直流极化条件下,按照正弦规律施加小幅交流激励信号,研究电化学的交流阻抗随频率的变化关系,称之为频率域阻抗分析方法。也可以固定频率,测量电化学电池的交流阻抗随时间的变化,称之为时间域阻抗分析方法。
锂离子电池的基础研究中更多的用频率域阻抗分析方法。EIS由于记录了电化学电池不同响应频率的阻抗,而一般测量覆盖了宽的频率范围(mHz-MHz),因此可以分析反应时间常数存在差异的不同的电极过程。
电化学阻抗谱数据可以有多种展示方法,最常用的为复数阻抗图和阻抗波特图。复数阻抗图是以阻抗的实部为横轴,负的虚部为纵轴绘制的曲线,亦称之为Nyquist图或Cole-cole图。阻抗波特图则由两条曲线组成,其中的一条曲线描述阻抗模量|Z|随频率的变化关系,称之为Bode模量图;另一条曲线描述阻抗的相位角随频率的变换关系,称之为Bode相位图。一般测量时同时给出模量图和相位图,统称为阻抗Bode图。除此之外,还包括介电系数谱(e',-e"),介电模量谱(M',-M")。
2.1 电极过程动力学信息的测量
2.2 表观化学扩散系数的测量
2.3 电池材料的导电性测试
3 实验测试方法
电化学阻抗谱测试结果的可靠性需要满足一定的前提条件,由于不同的电化学阻抗谱仪,其频率测试范围,电流、电压承受范围及控制精度,测试精度各不相同,此外,EIS测试体系的构型也非常丰富;一方面,锂离子电池中包含的可用于研究测试的体系非常庞大,如半电池、全电池、扣式电池、大容量电池(相较于扣式电池)、电极材料、电解质材料、单颗粒、薄膜、块材、原位及非原位等体系;另一方面,在引入如温度、湿度及电池的荷电态SOC等环境变量信息,可用于电化学阻抗谱测试的锂离子电池体系将非常庞大。因此,针对不同的测试体系及环境因素,需要有针对性的选取EIS测试仪器,构建合适的电极构型,设置合理的测试参数。本章节将分门别类介绍不同体系的测试方法及注意事项,同时介绍可用于EIS测试的工作站及相关参数和测试流程。
3.1 测试体系
3.1.1 电池的EIS测试
3.1.2 材料的EIS测试
3.1.2.3 薄膜固体电解质
3.1.2.4 无机固体电解质
3.1.2.5 聚合物电解质
3.1.2.6 隔膜材料
3.1.2.7 液体电解质
3.1.2.8 单颗粒
3.2 有源/无源体系
3.3 两电极/三电极体系
3.4 EIS测试设备及数据拟合
图24 (a)展示了阻抗谱特征频率点,不同电化学过程和关联的阻抗谱元件及相应区域显示在(b)中;(b)展示了半电池的阻抗分析和响应区域;蓝色的并联电路表示电流导电行为,这种电流存在于电极和集流体之间,红色的并联电路表示的是SEI的影响,绿色的并联电路表示的是负极电荷转移过程,橘黄色阻抗谱元件表示的是扩散及离子潜入过程,此外,欧姆阻抗和导体导电行为,(a)中欧姆阻抗来源于Celgard的三层隔膜电阻
图25 石墨负极对金属锂电位在0.5V附近时,不同温度下的阻抗谱,(a)显示的第一周锂化过程;(b)展示了第二周锂化过程;(c)和(d)展示列了周和第二周锂化过程的弛豫时间分布图
5 结 语
电化学阻抗谱是一种重要的电化学测试方法,在电化学领域尤其是锂离子电池领域具有广泛的应用,如电导率、表观化学扩散系数、SEI的生长演变、电荷转移及物质传递过程的动态测量等。合理的使用EIS可以帮助研究人员更好的理解电池,提升电池研发的水平。
值得注意的是,尽管电化学阻抗谱的作用很大,但用好电化学阻抗谱,并合理的解析阻抗谱数据并非一件简单的事情。通过简单的文献类比和个人经验去构建电路模型或数学模型,来分析电极过程动力学,有时会得出错误的结论,需要结合更新的数据处理手段,如DRT技术进行辅助分析。而实际测试中,往往对阻抗谱的测试前提条件“因果性、线性和稳定性”不加考究,对阻抗数据不加验证,如K-K变换演算等,往往导致研究结论可靠性和合理性的缺失。因此,为了获得可靠的研究结论,需要综合了解设备、测试环境;构建合理的测试体系,设置恰当的测试参数,运用科学的方法进行数据解析。