定制热线: 400-678-3556

电池知识

石墨烯会是显示技术的未来?假如石墨烯会发声会怎么样?

来源:未知    2019-04-09 18:50    点击量:
安德烈·盖姆和康斯坦丁·诺沃肖洛夫在2010年凭借石墨烯拿到诺贝尔物理学奖后,无数人蜂拥而至,企图在这一领域早早占下一席之地。当然不可否认他们当中有一些是物理科学的狂热爱好者,对这一可以在非绝对零度下稳定存在的二维晶体感到兴奋,并想更加深入的了解。但是更多夹在其中的是各路商人以及投机者,想要搭着名号和概念捞上一笔。五年过去了,我们仍未看到任何实质性的突破,那些活在实验室中的小东西们没有一样能够真正走入市场。现在,荷兰代尔夫特理工大学的研究人员又在石墨烯身上挖掘出了一些新的前景。

原则上讲,石墨烯是一种几乎完全透明的材料,只会吸收2.3%的光,以至于几乎完全不会反射光线。但是研究人员使用双层石墨烯形成石墨烯泡沫,并将其覆盖在氧化硅板上。氧化硅板有大约十倍于人类头发宽度的孔,而挡石墨烯横跨这些孔腔时,石墨烯气泡会根据压力变化而膨胀或收缩,改变了光线的折射角度,从而在硅化板孔隙中不断折射,最终投射出不同的颜色。当然最主要的还是石墨烯那略显极端的物理性质。由于只有单层分子,电子在石墨烯中的传导速度是其他导体无法比拟的。研究人员们认为这可能会衍发出一种新的显示技术,石墨烯组成的“机械像素”将会比LED屏幕更加的耐用和节能,并且也更加灵活,易于控制。

但是问题在于,现在根本无法做到精准的控制每个石墨烯泡沫的压力,而且原子级的石墨烯材料在固定问题上也非常难以解决。为了黏着在基层表面,需要加入高分子材质,但因为高分子材质的导电、导热性差,反而拖累了石墨烯的优异性质。而且即使是石墨烯泡沫的颜色变化也非常难以控制,目前甚至无法筛出纯净的红色或蓝色。

2004年安德烈·盖姆和康斯坦丁·诺沃肖洛夫在实验室中通过机械剥离法成功的从石墨中分离出了石墨烯,证明了它可以单独存在的可能。但是十二年过去了,这一神奇材料的制作还是只能仰仗笨重的机械分离法。即使是外行人,只需要知道这是一种将原材料不停的机械式层层剥离,最终获得原子级材料的方式,就知道它的工业量产化在当下可以说是几乎不可能完成的任务,而氧化还原法和SiC外延法也都无法平衡成本与良品率。所以就目前而言,石墨烯还是只适合安安静静的待在实验室中做一个高冷的超级材料,至于量产化甚至商用,还是不要对它抱有太多期待了。新型石墨烯声波信号发生器只有指甲盖大小,能够将不同频率的声波混合、放大和均衡。

石墨烯自2010年发现以来一直是材料界研究的热门,应用面也十分广泛。而最近,来自埃克塞特大学(UniversityofExeter)的研究者使用石墨烯制作声波信号发生器,能够产生可控的复杂声波信号。

研究团队表示这样的信号发生器将有可能取代耳机或耳机中的重要元件,也将有可能颠覆整个音频和电子通信行业。

一般来说,耳机由扬声器、放大器和均衡器组成,而这些元件现在都可以集成在指甲盖大小的芯片中。传统的扬声器利用震动来发出声音,即利用电信号控制电磁铁和永磁铁之间的吸斥作用并带动振膜(Vibration)发出声音。

这也就是这款耳机发声的基本原理,这是一项十分成熟的技术,在过去的一个多世纪里几乎没有什么变化。但是埃克塞特大学的研究团队,将该技术改良和简化,新型石墨烯声波信号发生器中已经不存在需要移动或者震动的元件,只采用了一层薄薄的石墨烯薄膜。

这样一层石墨烯薄膜的厚度几乎达到了原子级,能够根据输入的电流大小将自身的温度升高或降低。而发声的原理其实也和震动有关,即以石墨烯薄膜的热波动(ThermalVibration)带动空气震动来发出声音。

而这就是热量转化为声能的能量转化,这在科学界并不是新鲜事。不过,埃克塞特大学的研究团队却是第一个在热-声转化过程中实现不同频率声波的叠加、放大以及均衡。更加难得的是,所有的这一切都发生在这样一个指甲盖大小的芯片里。

该技术的详细情况以论文的形式发表在《科学快报》上,大卫·霍西尔博士(DrDavidHorsell)是该文章的第一作者,现任埃克塞特大学高级讲师,也是量子系统和纳米材料研究组(theQuantumSystemsandNanomaterialsGroup)中的研究成员。

霍西尔博士从石墨烯的发声原理出发向我们作了解释:“热-声转化起初并没有受到大家多少关注,因为这种形式的能量转化被认为是低效的,所以才没有很多相关的实际应用。

我们并没有从能量转化角度来看,相反我们仅仅考虑声音是如何产生的。我们发现控制石墨烯的导通电流能够产生声音,并且能够精确改变各个频率声波的大小。这种声波放大以及控制机制毫无疑问将开启我们从未涉足的应用领域。”

不要忘了,石墨烯材料是几乎透明的,那么这种既能产生声波又能透光的性能必然会在视听技术中掀起革新的风潮。想象一下,既能显示又能发声的新型手机屏幕一定大受欢迎。只是,以后换屏是不是又要涨价了。

研究团队已经尝试将该项技术应用于超声波成像中,能用于医院以及其他医疗机构。对于新技术的应用,霍西尔博士表示:“其实发出声音是一部分,而将不同频率的声波混合在一起是更加关键的一步。对于高效地产生超声波或者次声波也是很重要的。

不过,石墨烯声波信号发生器几乎是毫无难度地就将这样的功能实现了,这必然会对电子通信行业造成不小的冲击。”

产品相关推荐