定制热线: 400-678-3556

电池知识

锂电池为什么不能在低温下充电?在低温下充电会导致什么后果?

来源:未知    2019-04-14 12:27    点击量:

天气寒冷,不少人在外使用手机时发现手机电池电量消耗很快,有时还会出现死机、触摸屏失灵的情况。专业人士提醒,低温对手机电池的影响很大,寒冷天气外出使用手机,可以采用一些方法提高电池耐用度。

目前的手机电池一般为锂电池,电池的化学反应速度会受到温度影响。手机长时间在低温环境中,会使电池化学反应迟缓,导致电池放电电流变小,降低电池的容量,就可能出现电量用得快、黑屏、死机、触摸屏失灵、无法上网等情况。当从寒冷的室外进入温暖的室内时,温度的变化还可能导致手机内部凝成水雾,出现电路板短路或其他故障。

在寒冷的天气外出时,尽量把手机的电量充足,并减少玩游戏、看电影、听音乐等耗电程序的运行。最好把手机放在口袋、背包等相对温暖的地方,拨打、接听电话可以使用耳机,尽量避免将手机直接暴露在冷空气中。不要长时间在低温环境下使用手机。从室外进入室内后,把手机放置一段时间,等水雾蒸发后再使用。

如果手机在低温环境下使用时出现临时故障,可以关机暂停使用,然后让手机在温度稍高的环境下适应一会儿,情况会有所改善。

锂离子电池的工作原理是内部的电解质通过化学反应的变化,在正负极出现电势差从而产生电流。在低温环境下电解质移动得相当慢,从而影响锂离子在正负极之间的转移活性,导致电池充放电性能下降。

简单地说,在低温环境下,并不是锂电池真的没电了,而是有电却不能正常释放出来。

有分析数据称,普通的锂电池在零摄氏度时,其容量会减少20%,当达到零下10摄氏度时,容量可能只有一半左右。

大部分手机电池的正常工作区间都在0-35摄氏度之间,低于或高于这个温度,都有可能失常。

低温对锂电池不好,如果再加上电量低,那伤害更是雪上加霜了,所以苹果为了保护锂电池,加入了“自我保护”机制——遇到“低温+电量低”时自动关机并无法开机使用。

对此,我们看看苹果官方给出的说明就知道了,iPhone的理想工作环境温度为0℃-35℃。当室温降到一定温度(-10℃左右)时,苹果就会自动关机。

低温对磷酸铁锂电池的影响

目前,磷酸铁锂电池是应用在电动汽车上最多的电池,这种电池安全性高,单体寿命较长,但磷酸铁锂有一个致命的缺点,他的低温性能比其他技术体系的电池略差。低温对磷酸铁锂的正负极、电解液和粘接剂等都存在影响。比如,磷酸铁锂正极本身电子导电性比较差,低温环境下容易产生极化,从而降低电池容量;受低温影响,石墨嵌锂速度降低,容易在负极表面析出金属锂,如果充电后搁置时间不足而投入使用,金属锂无法全部再次嵌入石墨内部,部分金属锂持续存在负极的表面,极有可能形成锂枝晶,影响电池安全;低温下,电解液黏度会增加,锂离子迁移阻抗也会随之增大;此外,在磷酸铁锂的生产工艺中,粘接剂也是一个非常关键的因素,低温对粘接剂的性能也会产生较大影响。

低温对钛酸锂电池的影响

同样是锂电池,钛酸锂电池的耐低温性能则比较优异。尖晶石结构的钛酸锂负极材料嵌锂电位约1.5V,不会形成锂枝晶,在充放电过程中体积应变小于1%。纳米化的钛酸锂电池可大电流充放电,实现了低温快充的同时又保障了电池的耐久性和安全性。比如,主打钛酸锂电池的银隆新能源,其产品具备在-50-60℃的正常充放电能力。钛酸锂电池有着材料上的优势,它在低温下仍然可以实现快充,这种任性,其他材料电池很难学来。

为何充电比放电更需要温度?

许多企业的电池产品能够实现低温下正常放电,但在同样的温度下,实现正常充电就比较吃力,甚至无法充电,当Li+嵌入石墨材料时,首先要去溶剂化,这个过程会消耗一定能量,阻碍了Li+扩散到石墨内部;相反,Li+在脱出石墨材料进入到溶液中时,会有一个溶剂化过程,而溶剂化不消耗能量,Li+可以快速脱出石墨。因此,石墨材料的充电接受能力要明显逊色于放电接受能力。

低温环境下,电池充电有一定的风险。因为随着温度的降低,石墨负极的动力学特性进步一变差,充电过程中,负极的电化学极化明显加剧,析出的金属锂容易形成锂枝晶,穿破隔膜并导致正负极短路。

尽量避免锂离子电池在低温下充电。当电池必须在低温下充电时,需要尽可能选择小电流(即慢充)对锂离子电池进行充电,并在充电后对锂离子电池进行充分搁置,从而保证负极析出的金属锂能够与石墨反应,重新嵌入到石墨负极内部。

业内企业及科研机构对电池耐低温性能的探索和攻关,多着眼于对现有正负极材料的工艺改进,以及通过提高电池的局部环境温度为电池在低温下工作创造条件。随着的技术的进一步发展,锂电池在低温环境下将有进一步的突破。

原因很简单,99%的锂电池都是不可以的,因为存在析锂问题。负极析锂是造成锂离子电池安全事故频发的重要因素,导致锂离子电池负极析锂的因素很多,例如正负极冗余度设计不足,电池低温充电,充电电流过大等因素都可能会导致负极析锂,负极析锂不仅仅会导致锂离子电池可以利用的锂资源变少,容量下降,还会在负极形成锂枝晶,锂枝晶随着锂离子电池的循环不断生长,最终会穿透隔膜,引起正负极短路。因此如何避免负极析锂是锂离子电池在设计的过程中需要重点考虑的问题。

低温是诱发锂离子电池析锂的重要因素,低温条件下负极的嵌锂动力学条件变差,负极的比容量降低,在较大的充电电流下很容易在负极表面形成锂镀层,甚至锂枝晶,因此有必要对锂离子电池在低温下的负极析锂的特点和机理做详细的研究。来自德国慕尼黑工业大学的Christian von Lüders等人通过静置电压和中子衍射等手段对商业18650锂离子电池在-2℃下析锂的特点和机理进行了研究,研究显示在充电倍率超过C/2的情况下会明显的增加析锂的数量,例如在C/2情况下,负极表面镀锂约占整个充电总容量的5.5%左右,在1C倍率下,则达到了9%。研究还发现,锂离子嵌入石墨结构的速率取决于锂镀层的数量,并揭示了静置电压与析锂数量有着密切的关系。实验中Christian von Lüders采用了18650电池,正极为NCM111材料,负极为石墨材料。在-2℃下C/20倍率下,电池受限于电解液扩散条件和正负极活性物质的动力学条件的限制,仅能发挥出25℃下容量的87%左右,约1687.21mAh。下表是在-2℃下,不同倍率下的电池充电容量。从数据上我们可以注意到,随着充电电流的增加,电池在充电过程中的温度逐渐提高,这对电池低温性能测量准确性是有一定影响,但是受限于18650电池的热传导系数,这一现象是难以避免的。

中子衍射的数据清楚的揭示了Li+嵌入到负极石墨结构的过程,在C/20充电倍率下,首先Li+与石墨反应生成LiC12,当电池充电容量达到1009mAh(约50%SoC)时,开始出现LiC6的衍射峰,当电池充电至1687mAh时,LiC6衍射峰强度大大增加,超过LiC12的衍射峰强度。相比之下,在1C倍率下充电后,LiC6的衍射峰强度要低于LiC12的衍射峰,这表明Li+在石墨结构中并不是100%转化,只有一部分锂嵌入到石墨的晶体结构之中,另一部分锂以金属锂的形式析出了,但是在衍射曲线上并未见到金属锂电衍射峰,这表明这部分析出的锂数量比较少,无法通过中子衍射的手段检测。

图片来自参考文献

在充电结束后,电池需要静置4h,对静置后的电池在此进行了中子衍射检测,具体结果如下图所示,从曲线上可以看到,经过4h的静置后,LiC6的衍射峰强度明显增强,而LiC12的衍射峰的强度明显下降,特别是1C倍率充电的电池这一变化更加显著,这主要是受益于负极内部各部分之间锂浓度的“再平衡”。但是相比于C/20倍率充电的电池,1C倍率充电电池的LiC6的峰值要明显低一些,这表明负极表面析出的锂,一部分是不可逆的。

图片来自参考文献

除了中子衍射,Christian von Lüders还测试了电池静置过程中电池电压曲线,如下图所示,从图上可以看到,充电倍率再C/2以上的电池,在电压静置过程中都出现了一个电压平台,对于C/2充电的电池,这个电压平台的时间长度为2h,对于1C充电的电池,这个电压平台的长度是3h。根据中子衍射的数据可以得知,该电压平台主要对应的是析出的锂重新嵌入到石墨晶体结构中的过程。

图片来自参考文献

不同的倍率下导致的析锂的量如下图所示,从图上可以看到,随着充电倍率的增大电池的析锂数量逐渐增加,特别是倍率超过C/2后,电池的析锂量出现了明显的增加,不过需要注意的是即使在C/20的小倍率下仍然出现了3%左右的析锂量。