生产太阳能电池片必须经过几道工序你了解吗?空气储能电站的构想能否梦想成真?
太阳能电池片的生产工艺流程分为硅片检测——表面制绒及酸洗——扩散制结——去磷硅玻璃——等离子刻蚀及酸洗——镀减反射膜——丝网印刷——快速烧结等。具体介绍如下:
一、硅片检测
硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试模组主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。
二、表面制绒
单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。
三、扩散制结
太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。
四、去磷硅玻璃
该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,
这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。
五、等离子刻蚀
由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。活性反应基团由于扩散或者在电场作用下到达SiO2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空系统抽出腔体。
六、镀减反射膜
抛光硅表面的反射率为35%,为了减少表面反射,提高电池的转换效率,需要沉积一层氮化硅减反射膜。工业生产中常采用PECVD设备制备减反射膜。PECVD即等离子增强型化学气相沉积。它的技术原理是利用低温等离子体作能量源,样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体SiH4和NH3,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜即氮化硅薄膜。一般情况下,使用这种等离子增强型化学气相沉积的方法沉积的薄膜厚度在70nm左右。这样厚度的薄膜具有光学的功能性。利用薄膜干涉原理,可以使光的反射大为减少,电池的短路电流和输出就有很大增加,效率也有相当的提高。
七、丝网印刷
太阳电池经过制绒、扩散及PECVD等工序后,已经制成PN结,可以在光照下产生电流,为了将产生的电流导出,需要在电池表面上制作正、负两个电极。制造电极的方法很多,而丝网印刷是目前制作太阳电池电极最普遍的一种生产工艺。丝网印刷是采用压印的方式将预定的图形印刷在基板上,该设备由电池背面银铝浆印刷、电池背面铝浆印刷和电池正面银浆印刷三部分组成。其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的粘性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程。
八、快速烧结
经过丝网印刷后的硅片,不能直接使用,需经烧结炉快速烧结,将有机树脂粘合剂燃烧掉,剩下几乎纯粹的、由于玻璃质作用而密合在硅片上的银电极。当银电极和晶体硅在温度达到共晶温度时,晶体硅原子以一定的比例融入到熔融的银电极材料中去,从而形成上下电极的欧姆接触,提高电池片的开路电压和填充因子两个关键参数,使其具有电阻特性,以提高电池片的转换效率。
烧结炉分为预烧结、烧结、降温冷却三个阶段。预烧结阶段目的是使浆料中的高分子粘合剂分解、燃烧掉,此阶段温度慢慢上升;烧结阶段中烧结体内完成各种物理化学反应,形成电阻膜结构,使其真正具有电阻特性,该阶段温度达到峰值;降温冷却阶段,玻璃冷却硬化并凝固,使电阻膜结构固定地粘附于基片上。
九、外围设备
在电池片生产过程中,还需要供电、动力、给水、排水、暖通、真空、特汽等外围设施。消防和环保设备对于保证安全和持续发展也显得尤为重要。一条年产50MW能力的太阳能电池片生产线,仅工艺和动力设备用电功率就在1800KW左右。工艺纯水的用量在每小时15吨左右,水质要求达到中国电子级水GB/T11446.1-1997中EW-1级技术标准。工艺冷却水用量也在每小时15吨左右,水质中微粒粒径不宜大于10微米,供水温度宜在15-20℃。真空排气量在300M3/H左右。同时,还需要大约氮气储罐20立方米,氧气储罐10立方米。考虑到特殊气体如硅烷的安全因素,还需要单独设置一个特气间,以绝对保证生产安全。另外,硅烷燃烧塔、污水处理站等也是电池片生产的必备设施。
优势初显
目前,国内具有代表性的一批多能互补集成优化示范工程项目均在建设当中,例如属于能源消费终端电热冷气一体化集成的多能互补示范工程,包括武汉未来科技城多能互补示范工程项目、合肥空港示范区多能互补示范工程项目和青岛中德生态园多能互补示范工程等;属于大型综合能源基地风光水火储多能互补示范工程,包括宁夏嘉泽新能源智能微电网项目(已投运)和青海龙羊峡水光互补项目(已投运)等,其能源高效利用的优势已初现。
在国外,欧洲地区太阳能与其他能源相结合使用较多,例如丹麦主要采用太阳能与生物质能联合应用,这种能源利用方式得到了丹麦政府的大力支持。另外,瑞典在太阳能与生物质能结合方面也取得了丰富的经验。德国的供暖方式之一是采用太阳能与燃气互补系统。
除了上述的多能互补之外,利用主要可再生能源多能互补+压缩空气储能生产电力,将是一种完全意义上的清洁绿色能源方式,也是多能互补方面的一个重要领域,最近由国家专利局授权的《一种海浪能、风能、太阳能联合利用发电站》为此做出了有益探索。
设计关键点
岸线地带是海浪能、风能、太阳能三大能源集中区域,具有得天独厚的自然可再生能源区位优势,为三大自然能源多能互补+储能利用开辟了无限的想象空间。海浪能、风能、太阳能多能互补压缩空气储能电站原理及主要组成部分包括海浪能部分、风能部分、太阳能及换热器、压缩空气储能部分、涡轮发电机及控制系统6部分组成。
海浪能部分通过海水的浮力及波浪传播原理,采用海面点浮式捕获海浪能量方式,在岸线近海(海深可选择4m—7m)设置框架群与海底固定,每个框架内设置浮筒,浮筒被限制在框架内并可沿框架随海浪做上下垂直运动;气缸、集气管固定在框架伸出海面以上的部分,气缸布置在框架中心,浮筒通过连杆与气缸相连接(连杆与气缸内活塞相连);气缸上部设置出气单向阀与集气管相通,设置进气单向阀与外界大气相通;随着海浪的上下起伏,推动浮筒上下垂直运动,海浪从波谷向波峰上升阶段,浮筒受到海水浮力上升,气缸内空气被压缩压力增大,当压力值大于集气管中压力时,气缸出气单向阀打开向集气管输入压缩空气;海浪从波峰向波谷下降阶段,由于浮筒具有一定质量,带动连杆、活塞下行,气缸内空气压力值下降,气缸出气单向阀关闭,进气单向阀打开,外界大气进入气缸,为下次压缩做好准备;循环往复,外部大气被不断压缩进入集气管。
风能部分,风机分为水平轴风力机和垂直轴风力机两类,根据电站的特点,宜采用垂直轴风力机,通过自然风力吹动风力机扇叶旋转,带动风机轴旋转,通过一对伞齿轮将垂直扭矩传递给与之相连的水平布置的空压机轴,空压机将外界大气压缩,压缩空气进入集气管。空压机有很多形式,主要包括活塞往复式、叶片式、双螺杆等形式,双螺杆式空压机由于其输出压力平稳、寿命长等特点,可作为电站的首选。
太阳能部分,通过槽式太阳能集热管系统,将太阳能集热管中的传热介质(导热油)加热,被加热的传热介质通过换热器将集气管输入的涡轮机前压缩空气加热,使压缩空气进一步膨胀后喷入涡轮机。
压缩空气储能,系统中设置压缩空气储气罐,主要为在风力较小、海浪较低情况下,由风能、海浪能提供的压缩空气流量不足时,起到向系统中补充压缩空气的作用,以保证在一定时间内进入涡轮机的压缩空气达到设定流量和压强,保证电力输出的稳定、持续。为下个时段风力、海浪加大趋于正常值赢得时间,并再次将储能器充满。另外电站中的集气管,由于其管路较长、容积较大对压缩空气同样起到蓄能、稳流的作用。为增大储气罐压缩空气储量,可采用在进入储气罐前管道加装多级压缩机,利用自身发出的电力对压缩空气进行多级压缩,以获得较高压力值并存储。同时电站设计时要充分考虑结构的强度以抵御台风等恶劣天气的影响。
海浪能、风能、太阳能多能互补压缩空气储能电站有何优势?首先其原理、结构及设备简单,无任何复杂精密设备,降低工程造价,电力成本低。其次,能量采集范围面广量大,使能量更加趋于稳定,便于电力的大规模生产,解决了单一风力发电、太阳能光伏发电输出电力波动、断续及输出功率不能随负载变化得到控制等问题。第三,海岸线漫长,适合电站建设地点众多,并可作为离岸岛屿的分布式能源系统,可进一步实现冷、热、电三联产。第四,整个过程无任何污染,做到了清洁绿色环境友好。
潜力无限
我国是海洋大国,岸线长达18000多公里,特别是由于台湾海峡形成狭管效应,使东南沿海成为我国风能资源最佳的地区,风能又形成了较大的海浪,为电站建设提供了优良的自然条件。同时,沿岸地区经济发达,电力消耗量巨大,电网系统完善,多能互补电站的建设,可作为沿岸城市供电的补充,取代部分煤电,对环境保护具有重大现实意义,具有广阔的商业前景及社会效益。
电站具有向世界推广的巨大潜力,在地球表面,海洋面积占整个地球表面积的71%,陆地面积占总面积的29%,浩瀚的海洋、无尽的岸线为电站在世界范围推广奠定了基础。国外对可再生能源发电领域进行了长期的探索,但在海浪能、风能、太阳能三能联合发电方面鲜见其有理论或实验方面的报道,如果电站取得成功,将成为我国继深潜、高铁、可燃冰开采后走向世界的重大项目,赢得全球效益。
一、总体要求
(一)指导思想 深入学习贯彻党的十九大精神,以习近平新时代中国特色社会主义思想为指导,深入贯彻落实习近平总书记两次视察北京重要讲话和对北京工作的一系列重要指示精神,坚定不移贯彻新发展理念,牢牢把握首都城市战略定位,以智能制造装备为核心,做大产业规模,以高端能源装备为支撑,进一步优化产品结构,培育特色智能专用装备,强化其在全市产业转型升级中的带动作用,为加快构建高精尖经济结构提供有力支撑。
(二)基本原则 坚持重大技术装备创新与新模式新业态创新相结合。突破核心技术,加强重大技术装备研发创新,采用新模式、新业态优化资源配置,推动企业信息化、智能化和服务化转型,提升系统集成能力。
坚持传统优势产业改造提升与新兴产业培育发展相结合。既要重视现有存量产业的挖潜改造提升,带动装备制造业加快转型升级;更要重视培育引进和发展新兴产业,提升综合实力。
坚持壮大龙头企业与培育分领域冠军企业相结合。支持龙头企业做大做强,带动智能装备产业整体规模提升;发挥“专精特新”企业示范作用,培育一批分领域冠军企业,抢占国际竞争制高点。
(三)发展目标 到2020年,智能装备产业技术创新能力和产业综合实力显著增强,掌握一批国际前沿核心技术和先进工艺,部分关键技术和装备实现突破,智能机器人、增材制造、智能制造解决方案等领域建成5至7家产业创新中心和产业公共平台,工业机器人系统集成、协作机器人、自动化控制系统、智能仪器仪表等领域培育一批单项冠军示范企业,智能制造等领域形成10家左右具有一定规模的系统解决方案供应商,打造全国高端装备产业创新示范区和系统解决方案策源地。
二、重点方向
(一)智能制造装备 聚焦重点领域,发展高档数控机床与机器人、增材制造、智能传感与控制、智能检测与装配、智能物流与仓储等智能制造关键技术装备,推动系统集成和行业解决方案的产业化应用。
高档数控机床。发展高速、精密、复合、多轴联动、具备网络通信功能的高档数控机床和五轴加工中心、复杂结构件数控加工中心。面向航空航天、汽车、海洋工程、轨道交通等重点领域,发展数控机床智能化技术,支持具有数据自动采集、监控、分析和自主预测决策、自适应柔性等功能的智能机床研发和产业化应用。加快高精度减速机、伺服电机、数控系统等机床关键零部件研发与产业化。
智能机器人。发展六轴关节型机器人、平面关节型搬运机器人、在线测量及质量监控机器人、真空(洁净)机器人等智能工业机器人;推进人机协作机器人、自主编程智能机器人等新一代工业机器人的研制与产业化。支持医疗手术机器人规模化临床应用,推动具备自主行走、人机交互等功能的服务型机器人产业化应用。发展消防救援、空间作业等特种机器人。发展智能机器人核心部件,推动机器人应用软件、减速器、机器人专用伺服系统规模化应用,加快发展计算机视觉、自然语言处理等前沿核心技术,发展柔性机器人、网络机器人、共融机器人等前沿技术。 增材制造装备。提升现有增材制造装备的工艺技术水平,发展关键核心器件。发展激光(电子)束高效选区熔化、大型整体构件激光及电子束送粉(送丝)熔化沉积等金属增材制造装备,熔融沉积成形、激光选区烧结成形、喷射成形等非金属增材制造装备,增材、减材、等材复合制造技术和装备。
智能传感与控制装备。发展高性能光纤传感器、视觉传感器、微机电系统传感器、多参数复合传感器等工业用高端传感器。发展面向复杂工况的工业过程在线分析检测仪器。支持智能变送器、仪器仪表的研发和产业化。发展高速高可靠性分布式控制系统(DCS)、快速响应多重冗余可编程逻辑控制器(PLC)、跨平台数据采集系统(SCADA)等控制系统,智能伺服系统、高精度液压与气动系统等传动装置。推动预测控制、智能优化决策、自适应控制等技术的创新研发和应用。
智能检测与装配装备。发展面向航空航天、轨道交通、汽车制造等行业的数字化非接触精密测量、在线无损检测、高效率强度及疲劳寿命测试与分析、设备全生命周期健康检测诊断、基于大数据的在线故障诊断与分析等智能检测装备。研发高效、高可靠、可视化柔性、质量可控的装配装备。
智能物流与仓储。发展高速智能输送与分拣成套装备、智能多层穿梭车、自动化立体仓库、高速堆垛机等装备,推进智能物流与仓储装备自动控制技术、总线驱动技术、物流配送仿真技术的工程化应用。
上海宝鄂实业有限公司拥有一支从事锂电池多年、经验丰富的研发团队,我们时刻关注着锂电池在各领域的最新发展和应用,并不断为客户研发出“先进、安全、稳定”的锂电池方案,提供包括18650锂电池、26650锂电池和铁锂电池等多种锂电池服务。