定制热线: 400-678-3556

电池知识

目前国内锂离子电池系统的成本在多少区间里?限制燃料电池发展的瓶颈是什么?

来源:宝鄂实业    2019-04-20 17:49    点击量:

 目前,国内锂离子电池系统的成本在1800元/kWh左右,燃料电池堆(不含系统中的燃料系统等各种附件)的成本在5000元/kW左右。对于一辆普通轿车,假设是电动汽车,电量配置60kWh(BYDE6配置60kWh)其成本在9.6万元。如果是燃料电池车,功率配置100kW(丰田Mirai配置114kWh),电堆成本在50万左右。

  燃料电池的成本目前明显高于锂离子电池,这是限制燃料电池发展的瓶颈。一般认为,燃料电池的成本偏高主要是由于使用了贵金属Pt,而实际Pt的成本计算如下:目前较高的Pt载量的水平为:0.4mg/cm2,其电性能水平为1600Ma@0.6V/cm2,即0.96W/cm2。对于100kW的燃料电池系统中使用的Pt含量为41.67g。Pt的价格按照500元/g计算,使用的Pt的成本为41.67*500=20833元。对于100kW的燃料电池堆的成本在50万元以上,Pt的成本只占总成本的4%左右。燃料电池的成本主要是因为目前材料和系统的工艺都不太成熟,而随着商业化的发展,其成本必然有非常大幅度下降。

  安全性与相关法规

  动力电池的安全性是电动汽车发展过程中首先需要考虑和解决的问题。动力型锂离子电池安全性的提高需要建立从材料、电池及关键部件到系统安全保障等一系列技术措施。随着单体电池的大型化和成组化使用,动力型锂离子电池系统安全问题面临着新的挑战。而燃料电池的燃料是氢气,属于易燃易爆气体,因此市场普遍担心其的安全性问题,而实际上氢气的安全性相较于汽油和天然气并不差。

  单体层级燃料电池的安全设计少于锂离子电池。系统集成层级燃料电池系统比锂离子电池系统复杂。由于使用了可燃气体氢气,多了对氢气的泄露保护设计。由于需要防止质子交换膜润湿不充分带来的影响,需要通过监控内阻来监控内部湿度的变化。燃料电池和锂离子电池相关安全性设计如表4所示。

 

  动力型锂离子电池的还原剂和氧化剂都存储在同一个装置中,之间仅有一层微米级别厚度的隔膜,而燃料电池的还原剂和氧化剂在电池外部分开放置。从原理上讲,燃料电池的安全性优于锂离子电池。通过一系列的安全防护,两种电池的安全性都在可接受的程度。

  为了保证动力电池的安全性,国家针对动力型锂离子电池和燃料电池制定了一系列的标准,从而确保动力电池的安全性、可靠性。如表5所示,燃料电池相对锂离子电池的标准偏少,发行时间早,标准与现状符合性不如锂离子电池。电动汽车有对应的定型试验规程《GB/T18388—2005电动汽车定型试验规程》,而燃料电池车定型规程作为汽车行业对于新能源汽车产品定型的一个必备标准急待推出。

 

  1 碳负极材料:此种类型的材料无论是能量密度、循环能力,还是成本投入等方面,其都处于表现均衡的负极材料,同时也是促进锂离子电池诞生的主要材料,碳材料可以被划分为两大类别,即石墨化碳材料以及硬碳。其中,前者主要包括人造石墨以及天然石墨。人造石墨的形成过程为:在2500℃以上的温度中,将软碳材料进行石墨化处理之后得到,MCMB属于人造石墨中比较常用的一种,其结构为球形,表面质地较为光滑,直径大约为5-40μm。由于受其表面光滑程度影响,使电极表面以及电解液之间发生反应的几率降低,进而降低了不可逆容量。同时,球形结构能够方便锂离子在任何方向进行嵌入和脱出活动,对保障结构稳定具有较大的促进作用。天然石墨也具有诸多优势,其结晶度较高、可嵌入的位置较多,并且价格较低,是较为理想的锂离子电池材料。但其也存在一定的弊端,例如在与电解液反应时,相容性较差,在进行粉碎时表面存在诸多缺陷等,这都将对其充电或放电的性能产生较大的不利影响。此外,硬碳的形成过程为:在2500℃的状态下,难以实施石墨化的碳材料,其主要为高分子化合物的热解碳,通过高倍显微镜能够看出,其是由许多纳米小球堆积而成,整体呈现出花团簇状,具体如图1所示。在其表面具有大量纳米孔的无定形区域,在容量方面远远超过石墨的标准容量,进而对循环能力产生较大的不利影响。

 

  2 硅负极材料:由于硅物质的储存量较为丰富,且价格较为低廉,因此将其作为新型负极材料应用到锂离子电池中十分理想。但是,由于硅属于半导体,电导率较差,并且在嵌入的过程中将会使体积膨胀成以往的数倍,最高膨胀度能够达到370%,这将导致活性硅粉化和脱落,难以与电子进行充分的接触,进而使得容量迅速缩减。要想使硅在锂离子电池材料中得到良好的应用,使其在充电或者放电的过程中,能够对其体积进行有效的控制,进而使其容量和循环能力得到极大的保障,可以采用以下几种方式来实现,第一,使用纳米尺寸的硅。第二,将硅与非活性基体、活性基体、粘接剂相结合。第三,利用硅薄膜,其已经被视为是下一代最为适用的商用负极材料。

 

  3 锂离子电池正极材料:钴酸锂作为正极材料,被应用的时间最早,并且直至目前仍然属于消费电子产品中居于主流的正极材料。钴酸锂与其他正极材料相比较能够看出,其工作过程中电压较高,充电或者放电时电压运行较为平稳,能够符合大电流的要求,具有较强的循环性能,电导效率较高,材料以及电池等工艺较为稳定。但是其也存在许多缺点,例如资源较为短缺,价格较贵,钴含有毒性,使用时具有一定的危险,并且会对环境产生不良影响。尤其是其安全性不能得到切实的保障,这将成为制约其广泛发展的重要因素。在对其进行的研究中,以Al3+、Mg2+、Ni2+等金属阳离子掺杂最为广泛,随着科研的不断推进,目前采用Al3+与Mg2+等金属阳离子掺杂形式更是已开始投入使用。在钴酸锂的制备方面,主要包括两种方法,即固相合成法以及液相合成法。在工业中普遍使用的是高温固相合成法,它主要利用锂盐,例如Li2CO3或LiOH等,与钴盐如CoCO3等,按照1:1的比例进行融合,并且在600℃至900℃高温的状态下进行煅烧而形成。目前市场中对钴酸锂材料的应用主要为二次电池市场当中,并且也成为小型高密度锂离子电池材料的最佳选择。

 

  三元正极材料具有较为显著的三元协同效应,其与钴酸锂相比较能够看出,在热稳定性方面存在较大的优势,并且生产成本较为低廉,能够成为钴酸锂最佳代替材料。但是其密度较低、循环性能方面也有待提高。对此,可以采用改进合成工艺以及离子掺杂等进行调整。三元材料主要应用于钢壳、铝壳等圆柱形锂离子电池当中,但在软包电池中由于受到膨胀因素影响,使其的应用受到较大限制。在未来的应用中,其发展方向主要有两个方面:第一,向着高锰方向,主要在蓝牙、手机等小型便携式设备方面发展。第二,向着高镍方向,主要在电动自行车、电动汽车等对能量密度需求较高的领域中进行应用。

 

  磷酸亚铁锂在充电和放电方面具有良好的循环性能以及热稳定性,在使用过程中具有较强的安全保障,并且该材料绿色环保,不会对环境造成严重的损害,同时价格也较为低廉,被我国电池工业认为是进行大型电池模块生产的最佳材料。目前的主要应用领域有:电动汽车、便携式移动充电电源等,在未来发展中将会朝着储能电源、便携式电源方向深入发展。

 

  锰酸锂在应用中具有较强的安全性以及抗过充性,由于我国锰资源较为丰富,因此价格较为低廉,对环境的污染较小,无毒无害,工业制备操作较为简便。但是其在充电或者放电过程中,由于尖晶石结构不稳定,容易产生Jahn-Teller效应,再加上高温状态下锰的溶解,容易缩减电池容量,因此其应用也受到了较大的限制。目前,锰酸锂的应用范围主要是小型电池,例如手机、数码产品等,在动力电池方面与磷酸铁锂能够互为替代,因此产生了强烈的竞争,其发展方向将会向着高能量、高密度、低成本的趋势发展。

 

  锂离子电池产品呈现出蓬勃发展的态势,随着科学技术的发展,智能手机、电脑等产品得到广泛的应用,这将使得对锂离子电池的需求量变大,为其带来较大的发展机遇。同时,车载锂离子以及储能电源等也逐渐得到发展,为锂离子电池提供了新的增长点。由此可见,在未来的发展中,必会加强对此方面的研究力度,使锂离子电池的作用发挥到更大,这也将带动其电池材料不断得到更新换代。

 

  三、前景及展望

  综合来看,在能量密度、寿命和安全性方面燃料电池优于锂离子电池;而在成本方面,燃料电池比不上锂离子电池。目前锂离子电池的关键技术为能量密度提升,安全性,热管理,系统集成优化控制等;燃料电池的关键技术有耐久性,冷启动,系统集成优化控制等。无论燃料电池还是锂离子电池,相关的技术均有大量进步的空间。对于锂离子电池来说,如果其能量密度能够进一步提高,循环寿命能够更长,则也是一种非常优秀的驱动能源。如果燃料电池的成本能够降低,则能够真正作为汽油/柴油燃料的替代能源。能量密度的提升面临基础学科领域的瓶颈,很难得有质的提升;而成本的降低,可以通过商业化解决。因此短期来看,锂离子电池比燃料电池更适用;长期来看,燃料电池比锂离子电池更有发展前景。