定制热线: 400-678-3556

电池知识

如何选择质量好的超级电容器?超级电容器的主要应用是什么?

来源:宝鄂实业    2019-04-24 20:38    点击量:

超级电容器的两个主要应用:高功率脉冲应用和瞬时功率保持。高功率脉冲应用的特征:瞬时流向负载大电流;瞬时功率保持应用的特征:要求持续向负载提供功率,持续时间一般为几秒或几分钟。瞬时功率保持的一个典型应用:断电时磁盘驱动头的复位。不同的应用对超电容的参数要求也是不同的。高功率脉冲应用是利用超电容较小的内阻(R),而瞬时功率保持是利用超电容大的静电容量(C)。

下面提供了两种计算公式和应用实例:

C(F): 超电容的标称容量; 
R(Ohms): 超电容的标称内阻; 
ESR(Ohms):1KZ下等效串联电阻; 
Uwork(V): 在电路中的正常工作电压; 
Umin(V): 要求器件工作的最小电压; 
t(s): 在电路中要求的保持时间或脉冲应用中的脉冲持续时间; 
Udrop(V): 在放电或大电流脉冲结束时,总的电压降; 
I(A): 负载电流; 
瞬时功率保持应用 
超电容容量的近似计算公式,该公式根据,保持所需能量=超电容减少能量。 
保持期间所需能量=1/2I(Uwork+ Umin)t; 
超电容减少能量=1/2C(Uwork2 -Umin2), 
因而,可得其容量(忽略由IR引起的压降)C=(Uwork+ Umin)t/(Uwork2 -Umin2) 

实例:

假设磁带驱动的工作电压5V,安全工作电压3V。如果直流马达要求0.5A保持2秒(可以安全工作),那么,根据上公式可得其容量至少为0.5 F。因为5V的电压超过了单体电容器的标称工作电压。因而,可以将两电容器串联。如两相同的电容器串联的话,那每只的电压即是其标称电压2.5V。如果我们选择标称容量是1F的电容器,两串为0.5F。考虑到电容器-20%的容量偏差,这种选择不能提供足够的裕量。可以选择标称容量是1.5F的电容器,能提供1.5F/2=0.75F。考虑-20%的容量偏差,最小值1.2F/2=0.6F。这种超级电容器提供了充足的安全裕量。大电流脉冲后,磁带驱动转入小电流工作模式,用超电容剩余的能量。在该实例中,均压电路可以确保每只单体不超其额定电压。

脉冲功率应用脉冲功率应用的特征:和瞬时大电流相对的较小的持续电流。脉冲功率应用的持续时间从1ms到几秒。设计分析假定脉冲期间超电容是唯一的能量提供者。在该实例中总的压降由两部分组成:由电容器内阻引起的瞬时电压降和电容器在脉冲结束时压降。关系如下:Udrop=I(R+t/C),上式表明电容器必须有较低的R和较高的C压降Udrop才小。

对于多数脉冲功率应用,R的值比C更重要。以2.5V1.5F为例。它的内阻R可以用直流ESR估计,标称是0.075Ohms(DC ESR=AC ESR*1.5=0.060Ohms*1.5=0.090Ohms)。额定容量是1.5F。对于一个0.001s的脉冲,t/C小于0.001Ohms。即便是0.010的脉冲t/C也小于0.0067Ohms,显然R(0.090Ohms)决定了上式的Udrop输出。

实例:
GSM/GPRS无线调制解调器需要一每间隔4.6ms达2A的电流,该电流持续0.6 ms。这种调制解调器现用在笔记本电脑的PCMCIA卡上。笔记本的和PCMCIA连接的限制输出电压3.3V+/-0.3V笔记本提供1A的电流。许多功率放大器(PA)要求3.0V的最小电压。对于笔记本电脑输出3.0V的电压是可能的。到功率放大器的电压必须先升到3.6V。在3.6V的工作电压下(最小3.0V),允许的压降是0.6V。

选择超级电容器(C:0.15F,AC ESR:0.200Ohms,DC ESR:0.250Ohms)。对于2A脉冲,电池提供大约1A,超电容提供剩余的1A。根据上面的公式,由内阻引起的压降:1A×0.25Ohms=0.25V。I(t/C)=0.04V它和由内阻引起的压降相比是小的。

结论不管是功率保持还是功率脉冲应用都可以用上公式计算。当电路的工作电压超过超电容的工作电压时,可以用相同的电容器串联。一般地,串联应该保持平衡以确保电压平均分配。在脉冲功率应用中由超电容内阻引起的压降通常是次要因素。电容器超低的内阻提供一种克服传统电池系统阻抗大的全新的解决方案。

西班牙研究人员最近开发出一种可储能的太阳能电厂,可昼夜不停地发电。

可以昼夜发电的电厂是太阳能高塔电厂,其主体是一个高高的如同工厂烟囱一样的建筑。这种发电系统还包括集热区、蓄热罐和涡轮发电机组等。每片集热区中有数千面太阳能反射镜。这些反射镜紧紧围绕着一个高塔,按照经过精确计算的角度进行安装。

在白天,所有反射镜把阳光集中反射到高塔顶端的大水箱中,里面的水被加热成蒸汽后可驱动涡轮机发电。数个高塔组成一个面积可达几十平方公里的巨型太阳能发电厂。在西班牙已经建成的一个高塔电厂中,密密麻麻地分布着数百个高塔。

太阳能高塔电厂与我们熟知的太阳能电厂的发电原理不太一样。以往的太阳能发电厂一般采用太阳能电池板,通过吸收光子的能量直接产生电流,因此这种发电方式又被称为光伏发电。而太阳能高塔发电厂则是利用反射的太阳光加热水来进行发电,因此这种发电方式被称为反射太阳能集热发电。

太阳能发电一直没能大规模推广,除了成本和效率外,还有一个重要的原因是太阳能不稳定。那么,太阳能高塔电厂是怎样保障太阳能全天候稳定输出电能的?奥秘就在于蓄热罐。

蓄热罐中的储能物质是硝酸盐,主要是硝酸钾和硝酸钠。硝酸盐在白天受热熔化,吸收热量。夜晚温度降低时,这些硝酸盐则凝固,并释放大量热量到管道中,继续加热高塔水箱中的水,产生蒸汽继续发电。蓄热罐在夜晚释放的热能,足够让发电站在没有阳光的情况下运行15小时。也就是说,白天晒9个小时太阳,全天24小时都可以发电。

其实,类似的创意就在我们身边。不少人家房顶上安装了太阳能热水器,就是利用白天强烈的太阳能把水烧热,储存到晚上洗漱时使用。

除了西班牙,德国、美国、澳大利亚等国的研究人员也对太阳能集热发电展开了研究。澳大利亚一家名为“环境任务”的公司在新南威尔士州建造了一座规模庞大的太阳能高塔。这个发电站的塔高达1000米,底部的集热区直径达7000米,装机容量达到200兆瓦,足够20万户家庭使用,预计每年可以减少至少90万吨二氧化碳排放。

一些干旱荒漠地区曾被视为没有价值的贫瘠地区。太阳能专家表示,荒漠地区往往太阳能储量十分丰富,空中云汽量很少,晴天的比例很高,可以大力发展太阳能,尤其是太阳能高塔这样的全天候发电系统。这样不仅可以大量减少化石能源带来的污染,还可以利用太阳能电力发展远程灌溉系统,实现局部戈壁和沙漠的绿洲化。

产品相关推荐