太阳能电池的原理是什么?如何解决太阳能电池生产过程中的污染问题?
组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。
流程:
1、电池检测——2、正面焊接—检验—3、背面串接—检验—4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——5、层压——6、去毛边(去边、清洗)——7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——8、焊接接线盒——9、高压测试——10、组件测试—外观检验—11、包装入库
组件高效和高寿命如何保证:
1、高转换效率、高质量的电池片;
2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等;
3、合理的封装工艺
4、员工严谨的工作作风;
由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。
太阳电池组装工艺简介:
工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识.
1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。
以提高电池的利用率,做出质量合格的电池组件。
2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连
3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。
4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。
5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。
6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。
7、装框:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。
8、焊接接线盒:在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。
9、高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。
10、组件测试:测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。
太阳能电池阵列设计步骤1.计算负载24h消耗容量P。
P=H/V
V——负载额定电源
2.选定每天日照时数T(H)。
3.计算太阳能阵列工作电流。
IP=P(1+Q)/T
Q——按阴雨期富余系数,Q=0.21~1.00
4.确定蓄电池浮充电压VF。
镉镍(GN)和铅酸(CS)蓄电池的单体浮充电压分别为1.4~1.6V和2.2V。
5.太阳能电池温度补偿电压VT。
VT=2.1/430(T-25)VF
6.计算太阳能电池阵列工作电压VP。
VP=VF+VD+VT
其中VD=0.5~0.7
约等于VF
7.太阳电池阵列输出功率WP平板式太阳能电板。
WP=IP×UP
8.根据VP、WP在硅电池平板组合系列表格,确定标准规格的串联块数和并联组数。
生产环境中经常和重复出现的污染严重影响生产效益,在每个可能出现材料表面污染的工序使用接触式清洁机,可以显著提高生产效益和太阳能电池的功效。
当今光伏电池生产厂都面对不断提高生产效益、改善其产品工作效率的压力,另外原材料价格的剧烈变化也使其势在必行。影响生产效益和产品功效提高主要问题之一是生产环境中经常和重复出现的污染,如果在涂布、印刷或层压工序前材料表面有污染,生产效益将会被严重影响。
本文将注重污染的影响;污染的主要来源及其可能引发的问题;并提出减小污染问题的可行性解决方案。
污染如何影响太阳能模块的生产,取决于于生产哪一种太阳能模块。模块的生产有三种:
第一代太阳能电池 – 硅片: 尘埃和污染物会影响丝网印刷过程,引发许多问题如‘立碑现象’、开路和短路等。当锡焊接点中的污染物挥发和快速膨胀时,将导致漏焊和干焊。随后太阳能电池被封装在EVA薄膜中,如果薄膜和电池之间有灰尘或污染颗粒,因为遮挡阳光,最终产品的工作效率会降低。即使是肉眼看不见的微小污染颗粒,因为会有‘帐篷效应’将在复压的表面出现‘鱼眼’,从而产生视觉上的次品。这些都是制造厂要尽量避免的。
第二代太阳能电池 – 真空合金:它更加高效,但是在进入沉积工序前基片的表面必须保证是非常清结的。如果在连线电路中有污染颗粒,会出现和第一代工艺一样的问题,例如‘鱼眼’和‘立碑’等。同样,如果要达到最佳的电池工作效率,在封装阶段中玻璃或薄膜表面必须被清洁。
第三代太阳能电池利用与电子行业类似的丝网印刷技术。通常这类电池没有第一代和第二代高效,所以因为污染物而降低其效率的问题显得更加严重。基片和模版必须在每个印刷步骤之前被彻底的清洁。一般用于丝网印刷的基片是塑料材料或金属箔片,这些进入涂布或沉积前的基片从制造厂直接到达,通常都会带有污染残留物。例如,塑料薄膜一般会根据客户要求被裁切成不同的尺寸,碎屑很可能残留在材料的表面,静电吸引尘埃也是一个严重的问题。
污染不仅仅是在生产过程中引起问题。如果污染物是导电材料,会造成成品腐蚀,很可能只有在产品的后期,当存放在库房的时候才会被发现。
那么生产过程中的污染源来自哪里呢?
大量潜在的污染源包括人类的毛发、织物纤维、脱落表皮(空气尘埃的主要来源之一)、天花板、地面、包装和支架,甚至称作‘无脱落纤维’的含有酒精类物质的清洁布也会成为一种污染源。‘无脱落纤维’意味着织物没有表面脱落的纤维,但是当用其擦电池基片或模版组件时,纤维很可能脱落并残留在被清洁物表面上。静电是引发污染的另一个主要原因。一般电池板是由绝缘材料构成,易含有静电电荷。因此,松散的颗粒会立刻被电池板表面吸引。运输、去包装或用抹布清洁电池板都会产生静电。特别在印刷、涂布或压层等需要进行表面处理的工序时,清洁的基片对产品质量、减少浪费和停机时间,直至提高生产效率和企业利润都是至关重要的。
所以怎样做才能最小化因为污染而对太阳能电池产生的影响呢?如何才能与污染和静电,还有它们对生产的影响作斗争呢?当前有两种表面除尘、除静电的方法: 非接触式和接触式除尘。
非接触式除尘是指清洁设备不直接与被清洁的材料表面接触,例如吸尘、吹尘或超声波。结合除静电棒和吸尘直接与卷材机械性接触以达到除尘效果。如果是吸尘系统,在整个表面的吸尘力必须平均分布。如果连接被清洁物和吸尘机的密封不严,清洁操作的有效性会降低。正确的位置和设置是至关重要的,同样速度、宽度和被清洁材料的类型也要和吸尘输出匹配。缺点是工作环境周围的污染残余会在吸尘设备除尘过程中被激活。同样,如果是吹尘的方式,同样要保证材料表面的吹尘空气力要一致,另外,被吹气的污染颗粒或尘埃很可能散落在生产线的其它地方,或者被材料表面的静电二次俘获。非接触式除尘方法在清除中等程度的污染上(污染物大约25微米)是相对成功的。然而,当今太阳能电池制造和使用者对质量的要求不断提高,因为其很难有效突破被清洁材料的表面空气层,只能清除大概25微米的污染物,这样的清洁表现显然是不够的。移动中的卷材或片材会形成一个空气层,如果要达到高效清洁的效果,一定要突破这个空气层。有些人认为,高压的空气一定会突破这层,然后吹掉表面上的颗粒。但在现实中这个应用不起作用。因为污染源散布在空气中,然后在清洁后的材料的另一点停留。所以,传统的非接触式清洁机如超声波或气流型,因其不能突破被清洁材料的表面空气层所俘获的污染颗粒,所以不是最有效的方式。
另一种选择是利用已经被半导体行业所证实的技术 —— 接触式清洁技术 。接触式除尘技术始于70年代末80年代初,英国的Teknek研发并制造了世界上第一台接触式清洁机。接触式清洁通常利用清洁滚轮与被清洁物表面的物理接触达到清洁、除尘的目的。接触式清洁辊是聚合物覆盖的胶辊,提供一种高效的卷材和单张清洁方式。当清洁辊与基片表面污染物有物理接触时,污染物转移到清洁辊表面。这是夹压式的方法,清洁辊同时挤压基材表面的空气层。结果能够在高速的情况下高效(96%以上)清除微小的污染物(通常小于10微米)。它不像毛刷式或机械刷的清洁系统会划伤敏感材料表面(如薄膜),橡胶滚轮不会损坏电池板的表面。利用接触式清洁设备能够清除硅片、玻璃或EVA薄膜等基材表面的小到1位微米的松动污染颗粒,而不损伤基材表面。随后被清除的污染颗粒转移到粘尘纸卷进一步分析和销毁。在清洁过程后,清洁过的电池板立刻通过静电消除单元去处静电,防止吸引颗粒引起再次污染。
在每个可能出现材料表面污染的工序使用接触式清洁机,可以显著提高生产效益和太阳能电池的功效。接触式清洁已经被证实是最高效的表面除尘、清洁方式。
结论
随着原材料价格的不断提高,太阳能电池生产厂必须要找到适合自己的提高生产效益和减少浪费的方法。污染物对生产效率和太阳能电池本身的效率都有重要的影响。接触式清洁技术为提高生产和电池的效率提供了一个最佳的可选解决方案。