磷酸铁锂电池应用于通信行业的三大应用优势是什么?
磷酸铁锂电池(简称:铁锂电池、铁电池,本文称“铁电池”),是一种正极材料为磷酸亚铁锂(LiFePO4)的新型蓄电池,由于铁电池具有循环寿命长、耐高温、体积小、重量轻、无污染等优点,移动通信、电动汽车、国家电网等行业都在对其进行研究和使用。其中通信行业在各研究院所技术专家的初步论证下建立了多种铁电池的试验站点,探究铁电池的节能减排效益。
磷酸铁锂铁电池简介
1990年,索尼公司率先在实验室推出了以LiCoO2为正极材料的锂离子电池,并于1991年开始产业化生产。与传统的铅酸蓄电池相比,锂离子电池在工作电压、能量密度、循环寿命等方面都具有显着优势。所以,在过去的二十年间锂离子电池被广泛应用于便携电子设备、电动工具等领域。而近几年,随着全球对节能减排的关注,锂离子电池也逐渐被应用于通信、国家电网以及电动汽车等多种行业。对于通信电源行业节能减排来说,要求蓄电池体积更小、重量更轻、寿命更长、更耐高温、维护更容易、性能更稳定、更环保等,因此为了顺应这些需求,锂离子电池也正逐渐向大容量电池方向转变,通信用磷酸铁锂电池应运而生。
通信用磷酸铁锂电池与传统的铅酸蓄电池相比,具有以下优点:能量密度高:标称电压为3.2V,能量密度是铅酸电池的4倍左右,体积小、重量轻;安全性强:磷酸铁锂正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定,电池不燃烧、不爆炸、安全性好;高温性能好:外部温度55℃时电池正常工作;高功率输出:标准放电为0.2C、可3C充放;长循环寿命:常温1C充放电,单体经2000次循环后容量仍大于80%;环保:整个生产过程清洁无毒,所有原料都无毒。通信用磷酸铁锂电池应用相比传统的铅酸蓄电池更能体现 “节能”、“节材”、“节地”等节能减排工作的需求。
现阶段通信用磷酸铁锂电池产品形式通信行业用蓄电池常用的电压等级有2V 和12V,与直流开关电源系统配套使用的蓄电池组电压等级为24V、48V,与UPS交流电源系统配套使用的蓄电池组电压等级为24V、36V、48V、96V、240V、384V等。常用的蓄电池组容量等级从25Ah、65Ah、100Ah、150Ah、200Ah、500Ah、1000Ah不等。为满足通信行业需求,磷酸铁锂电池产品形式主要有12V、48V模块两种类型,容量等级为10Ah、20Ah、50Ah、150Ah、200Ah等,电池模组通过串并联,可以行成多种电压等级、多种容量的电池组,满足开关电源和UPS备电的各种需求。
通信用磷酸铁锂电池节能减排方向
现阶段的磷酸铁锂电池产品类型相对比较丰富了,如何让其合理的应用于移动通信电源行业呢?
思路是:首先是理清行业需求,其次是分析产品优势,再次是制定差异化的节能减排的应用方案,最后再进行具体的数据对比分析。
通信电源行业对蓄电池的三类典型需求通信用直流开关电源系统鉴于通信的高可靠性要求,完善的通信电源解决方案要求开关电源系统配置蓄电池。通信主设备、附属设备种类众多,开关电源应用场景也很多,总结主要有以下几种:(a)户外型基站;(b)村通等无空调的基站;(c)空间紧张的室内宏基站;(d)直流供电的室内覆盖/分布式信源站;(e)无市电或三四类市电地区的太阳能光伏基站;(f)直流供电方案的WLAN站点等。
通信用UPS交流电源系统UPS交流电源系统主要应用于供配电系统的交流主回路部分,通信行业应用UPS交流电源系统的场景主要如下:(a) 交流供电的室内覆盖/分布站;(b)交流供电的微蜂窝站;(c)嵌入式UPS供电的数据机房;(d)交流供电方案的WLAN站点等。通信用240V/336V高压直流电源系统(HVDC)通信用高压电源直流系统(HVDC)是目前通信机房应用的新型供电系统,其配套电池组电压等级有240V和336V两种,蓄电池容量通常为50Ah~200Ah。
磷酸铁锂电池应用于通信行业的三大应用优势对于通信行业,主要关注磷酸铁锂电池的三大优势,从“节能”、“节地”、“节材”的角度体现节能减排。体积小、重量轻对于民用住宅内的站点,可节省承重加固的费用,进一步加速站点的建设, “节材”优势更加明显。
高温性能优异优异的耐高温性能可成倍增加户外站电池的寿命,降低维护及更换电池费用,提供系统可靠性;此外在有空调的基站中,可以尝试将空调设置为35度时启动,能有效降低基站平均电耗,“节能”优势更加明显。高功率放电铁电池在3C以上放电依然能放出全部容量的90%以上,高功率、深度放电的优势能有效降低目前UPS备用电池的总容量、容量降低的时对机房空间及承重要求过大等问题也伴随得到解决, “节地”优势更加明显。
通信用磷酸铁锂电池节能减排应用方向比亚迪将通信行业三大典型需求与铁电池的三大产品优势有机的结合起来,行成了独特的通信用铁电池电源系统解决方案,提出了通信电源行业节能减排的几种应用方案。室外一体化铁电池电源解决方案室外通信基站太阳直射,内置的铅酸蓄电池寿命通常不超过2年,本方案采用磷酸铁锂电池,耐高温性能优异,寿命达到5-10年。
磷酸铁锂电池应用于通信行业的三大应用优势是什么?此方案中电池的体积小,重量轻,耐高温、长使用寿命等优势在“节能”“节材”“节地”三个方面实现节能减排的目的,同时有效降低维护运营成本。村通等无空调的基站电源解决方案村通工程的基站都设在偏远的农村,规模小、配置小,基本上都没有空调,而且停电频繁,铅酸电池在恶劣环境下工作的寿命短、更换频繁、偏远农村的维护成本高。改用铁电池,则高温性能好、可深度充放电,循环寿命长,体积小、重量轻,安装轻便,可以在“节能”“节地”“节材”三方面达到节能减排的目的,同时还能改善网络供电质量。
空间紧张的室内宏基站电源解决方案室内宏基站数量多,覆盖广,要求供电可靠,所以一般都有两组电池备电。站内铅酸电池占地面积大、重量过重,当话务量增多而引起扩容需求时站内空间制约了新增设备的可能。如果采用一体化开关电源配合铁电池,则可降低机房中电源及电池的占地面积,满足设备扩容的需求。同时铁电池耐高温性能优异,可以将站内空调启动温度提高到35度左右,能够降低空调的能耗,通过节省电费有效降低运营成本,在“节能”“节地”“节材”三方面达到节能减排的目的。
室内覆盖/分布式站电源解决方案原有2G网络的室内覆盖,加之3G及WLAN热点的不断新建,室内覆盖站的数量将进一步增多。由于室内覆盖站点取电一般就近选择市电,选择48V通信电池模块或铁电池UPS进行备电则可有效解决该类问题。
通信用高压直流电源系统(HVDC)供电方案针对数据中心的供电方案,行业专家提出了通信用240V/336V高压直流电源系统。该系统对蓄电池的要求的特点是高电压(240V/336V)、短时间、大电流放电。如采用机架式磷酸铁锂电池组则有以下优势:
重量轻,节省机房加固成本;体积小,可以与HVDC系统以列头柜形式并列安放,不用单独建立电池房,也可节省供电系统的占地面积,提高通信设备机架装机率;铁电池可高倍率放电,降低蓄电池配置的容量;铁电池放电平台稳定,在电池供电模式下稳定的输入电压避免设备因输入电压的大范围波动而引起异常。
嵌入式UPS交流电源系统供电方案对于中小型数据中心,欧美的发达国家还有一种嵌入式UPS分布式供电方案,即用小功率UPS与网络柜配合以机柜为单位为服务器供电。选择铁电池UPS有以下优势:
重量轻,节省机房加固成本;体积小,3KVA铁电池机UPS仅占网络柜2U空间,提高服务器装机率;电池长寿命,主机与电池寿命几乎相同,降低电池更换成本;安全性好,铁电池不起火、不爆炸,满足IDC机房高安全性的要求通信用磷酸铁锂电池应用的节能减排案例及效益分析。
离子电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精度、保护IC功耗低、高耐压以及零伏可充电等特性。本文详细介绍了这三种保护电路的原理、新功能和特性要求。
近年来,PDA、数字相机、手机、便携式音频设备和蓝牙设备等越来越多的产品采用锂电池作为主要电源。锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化。针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池。
磷酸铁锂电池应用于通信行业的三大应用优势是什么?由于锂离子电池能量密度高,因此难以确保电池的安全性。在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而发生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,从而降低可充电次数。锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性劣化。锂离子电池的保护电路是由保护IC及两颗功率 MOSFET所构成,其中保护IC监视电池电压,当有过度充电及放电状态时切换到以外挂的功率MOSFET来保护电池,保护IC的功能有过度充电保护、过度放电保护和过电流/短路保护。
过度充电保护
过度充电保护IC的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)即激活过度充电保护,将功率MOS由开转为关断,进而截止充电。另外, 还必须注意因噪声所产生的过度充电检出误动作,以免判定为过充保护。因此,需要设定延迟时间,并且延迟时间不能短于噪声的持续时间。
过度放电保护
在过度放电的情况下,电解液因分解而导致电池特性劣化,并造成充电次数的降低。采用锂电池保护IC可以避免过度放电现象发生,实现电池保护功能。
过度放电保护IC原理:为了防止锂电池的过度放电状态,假设锂电池接上负载,当锂电池电压低于其过度放电电压检测点(假定为2.3V)时将激活过度放电保护,使功率MOSFET由开转变为关断而截止放电,以避免电池过度放电现象发生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。
当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免发生误动作。
过电流及短路电流
因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。
过电流保护IC原理为,当放电电流过大或短路情况发生时,保护IC将激活过(短路)电流保护,此时过电流的检测是将功率MOSFET的 Rds(on)当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,计算公式为: V-=I×Rds(on)×2(V-为过电流检测电压,I为放电电流)。假设V-=0.2V,Rds(on)=25mΩ,则保护电流的大小为I=4A。
同样地,过电流检测也必须设有延迟时间以防有突发电流流入时发生误动作。通常在过电流发生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。