磷酸铁锂电池储能系统在电力能源的应用有哪些?
来源:宝鄂实业
2019-05-04 23:22
点击量:次
磷酸铁锂电池储能系统在电力能源的应用
◆控制系统
磷酸铁锂电池能量存储系统由可编程逻辑控制器(PLC)和人机界面(HMI)进行控制。PLC系统的关键功能之一是控制储能系统的充电时间和速率通过标准化的通信输入、控制信号和电力供应,它与系统其余部分集成在一起。它可以通过拨号或因特网进行访问。它有多重防卫层以限制对它的不同功能的访问,并且为远程监控提供定制的报告和报警功能。
◆电力转换系统
电力转换系统的功能是对磷酸铁锂电池进行充电和放电,并且为本地电网提供改善的供电质量、电压支持和频率控制。它有一个能进行复杂而快速地动作、多象限、动态的控制器(DSP),带有专用控制算法,能够在设备的整个范围内转换输出,即循环地从全功率吸收到全功率输出。对无功功率以及有功与无功功率的任意需求组合,它都能正常工作。
◆铁锂电池电堆
电堆是由若干单电池组成。磷酸铁铁锂电池能源存储系统能够经济地存储并按照需求提供大规模电力,主要模式是固定方式。它是一种长寿命、少维护、高效率的技术,支持电力与储能容量的无级扩展。储能系统对于可再生能源供应商、电网企业和终端用户尤为有效。
铁锂电池储能系统能够应用于电力供应价值链的各个环节,可将诸如风能、太阳能等间歇性可再生能源电力转化为稳定的电力输出;偏远地区电力供应的最优化解决方式;电网固定投资的递延,以及削峰填谷的应用。储能系统也能够作为变电站及通信基站提供备用电源得到应用。磷酸铁锂电池储能系统对于环境友好,在所有的储能技术中对于生态影响程度最低,同时不以铅或镉等元素为主要反应物。
◆偏远地区供电
在人烟稀少的偏远地区,如海岛,柴油发电机往往作为单一的能量来源。柴油发电机往往因为负载的变化而以非额定功率工作,这使得燃油效率最高降低30%左右
风力发电与光伏发电占柴油发电总量的比例不断增加,当该比例达到30%左右的时候,其带来的不稳定性将直接降低当地电网的可靠性,应当限制增加更多的可再生能源发电。然而通过配置锂电池储能系统,该比例可以实现100%,而工程的回收期缩短至3年。随着燃油价格的上涨,经济性会更加显著。
◆通信基站
通信基站所使用的传统电池系统往往被用作备用电源,保证每年5-20次左右的短时或瞬间电力故障,它们不需要频繁的深度充放电循环。
5KW-8小时深度循环储能系统的目标市场是离网或弱电网区域的通信基站,将使得这些通信基站实现重复循环或者使用风能、太阳能等混合系统供电。磷酸铁锂电池储能系统大大降低了运营成本、柴油消耗从而延长了柴油机寿命并降低了通信基站对环境温度变化的敏感性。
◆削峰填谷
锂电池储能系统可以在配电端减低用户能量负载峰值,这将促进电网设备利用并满足终端客户需求。电网负载系数从而得到提高。下面的图表表示在用电高峰时有选择性地释放电力可以实现显著地节约能源。
◆智能电网
智能电网是未来发达电网管理系统的一个重要组成部分,磷酸铁锂电池储能技术在其中拥有巨大的市场空间。
随着磷酸铁锂电池技术的成熟完善和成本日益优化,大规模储能系统是未来新能源系统与智能电网的重要组成部分,储能电池是大规模储能系统的关键。锂电池具有能量密度高、循环寿命长、自放电率小、无记忆效应和绿色环保等优点,在电力储能领域具有广阔的应用前景。
锂电池电解液配方
1、将碳酸乙烯酯用氯气氯化合成了氯代碳酸乙烯酯,然后用三乙胺做缚酸剂脱去氯化氢,制得碳酸亚乙烯酯。氯化反应在无溶剂条件下进行,消去反应以常用作电解液溶剂的碳酸二甲酯为溶剂,可以防止溶剂的残留造成对添加剂的不良影响,同时选择2,3,4-三叔丁基苯酚做阻聚剂,两步反应收率75.0%,比文献值高。
2、用无水KF与氯代碳酸乙烯酯反应制备氟代碳酸乙烯酯,安全成本降低,生产工艺易于控制,以PEG.800为催化剂,单步收率82.5%。
3、将1,3-丙烷磺内酯用氯气氯化合成了2-氯-1,3-丙烷磺内脂,然后用三乙胺做缚酸剂脱去氯化氢,制得1,3-丙烷磺内酯,与文献相比,反应路线大大缩短,两步反应收率72.7%。
锂离子电池电解液添加剂
1、含硼添加剂
含硼化合物经常作为添加剂应用到不同正极材料的锂离子电池中,在电池循环过程中,很多含硼化合物会在正极表面形成保护膜,来稳定电极/电解液之间的界面,从而提高锂电池性能。
2、有机磷添加剂
除了亚磷酸酯类添加剂,目前所用的有机磷类添加剂还包括磷酸酯类化合物。XIA等将三烯丙基磷酸酯(TAP)添加剂应用到Li[Ni0.42Mn0.42Co0.16]O2(NMC442)石墨全电池中,发现当有TAP存在时会显著提高库仑效率,长时间循环后,仍然具有很高的容量保持。
3、碳酸酯类添加剂
含氟皖基(PFA)化合物具有很高的电化学稳定性,同时具备疏水性与疏油性的特性,当PFA添加到有机溶剂中,疏溶剂的PFA会凝聚到一起形成胶团。锂电池在长时间循环过程中性能明显提高,这主要是因为添加剂在循环过程中形成了双层的钝化膜,同时减少电极表面的降解与电解液的氧化分解。
解液由电解质锂盐、高纯度的有机溶剂和必要的添加剂等原料组成,对电池的比容量、工作温度范围、循环效率和安全性能等至关重要。电解液占锂电池成本为5-15%,产品毛利率在25-30%。电解质锂盐主要是六氟磷酸锂,占电解液的成本40%。从未来发展趋势看,随着国产六氟磷酸锂产品品质及一致性的提升,出口比例将大幅增加。
以上就是锂电池电解液配方和锂离子电解液添加剂介绍,由于锂电池的应用领域越来越广泛,形形色色的锂电池对其电解液的要求也必然有所不同。
◆控制系统
磷酸铁锂电池能量存储系统由可编程逻辑控制器(PLC)和人机界面(HMI)进行控制。PLC系统的关键功能之一是控制储能系统的充电时间和速率通过标准化的通信输入、控制信号和电力供应,它与系统其余部分集成在一起。它可以通过拨号或因特网进行访问。它有多重防卫层以限制对它的不同功能的访问,并且为远程监控提供定制的报告和报警功能。
◆电力转换系统
电力转换系统的功能是对磷酸铁锂电池进行充电和放电,并且为本地电网提供改善的供电质量、电压支持和频率控制。它有一个能进行复杂而快速地动作、多象限、动态的控制器(DSP),带有专用控制算法,能够在设备的整个范围内转换输出,即循环地从全功率吸收到全功率输出。对无功功率以及有功与无功功率的任意需求组合,它都能正常工作。
◆铁锂电池电堆
电堆是由若干单电池组成。磷酸铁铁锂电池能源存储系统能够经济地存储并按照需求提供大规模电力,主要模式是固定方式。它是一种长寿命、少维护、高效率的技术,支持电力与储能容量的无级扩展。储能系统对于可再生能源供应商、电网企业和终端用户尤为有效。
铁锂电池储能系统能够应用于电力供应价值链的各个环节,可将诸如风能、太阳能等间歇性可再生能源电力转化为稳定的电力输出;偏远地区电力供应的最优化解决方式;电网固定投资的递延,以及削峰填谷的应用。储能系统也能够作为变电站及通信基站提供备用电源得到应用。磷酸铁锂电池储能系统对于环境友好,在所有的储能技术中对于生态影响程度最低,同时不以铅或镉等元素为主要反应物。
◆偏远地区供电
在人烟稀少的偏远地区,如海岛,柴油发电机往往作为单一的能量来源。柴油发电机往往因为负载的变化而以非额定功率工作,这使得燃油效率最高降低30%左右
风力发电与光伏发电占柴油发电总量的比例不断增加,当该比例达到30%左右的时候,其带来的不稳定性将直接降低当地电网的可靠性,应当限制增加更多的可再生能源发电。然而通过配置锂电池储能系统,该比例可以实现100%,而工程的回收期缩短至3年。随着燃油价格的上涨,经济性会更加显著。
◆通信基站
通信基站所使用的传统电池系统往往被用作备用电源,保证每年5-20次左右的短时或瞬间电力故障,它们不需要频繁的深度充放电循环。
5KW-8小时深度循环储能系统的目标市场是离网或弱电网区域的通信基站,将使得这些通信基站实现重复循环或者使用风能、太阳能等混合系统供电。磷酸铁锂电池储能系统大大降低了运营成本、柴油消耗从而延长了柴油机寿命并降低了通信基站对环境温度变化的敏感性。
◆削峰填谷
锂电池储能系统可以在配电端减低用户能量负载峰值,这将促进电网设备利用并满足终端客户需求。电网负载系数从而得到提高。下面的图表表示在用电高峰时有选择性地释放电力可以实现显著地节约能源。
◆智能电网
智能电网是未来发达电网管理系统的一个重要组成部分,磷酸铁锂电池储能技术在其中拥有巨大的市场空间。
随着磷酸铁锂电池技术的成熟完善和成本日益优化,大规模储能系统是未来新能源系统与智能电网的重要组成部分,储能电池是大规模储能系统的关键。锂电池具有能量密度高、循环寿命长、自放电率小、无记忆效应和绿色环保等优点,在电力储能领域具有广阔的应用前景。
锂电池电解液配方
1、将碳酸乙烯酯用氯气氯化合成了氯代碳酸乙烯酯,然后用三乙胺做缚酸剂脱去氯化氢,制得碳酸亚乙烯酯。氯化反应在无溶剂条件下进行,消去反应以常用作电解液溶剂的碳酸二甲酯为溶剂,可以防止溶剂的残留造成对添加剂的不良影响,同时选择2,3,4-三叔丁基苯酚做阻聚剂,两步反应收率75.0%,比文献值高。
2、用无水KF与氯代碳酸乙烯酯反应制备氟代碳酸乙烯酯,安全成本降低,生产工艺易于控制,以PEG.800为催化剂,单步收率82.5%。
3、将1,3-丙烷磺内酯用氯气氯化合成了2-氯-1,3-丙烷磺内脂,然后用三乙胺做缚酸剂脱去氯化氢,制得1,3-丙烷磺内酯,与文献相比,反应路线大大缩短,两步反应收率72.7%。
锂离子电池电解液添加剂
1、含硼添加剂
含硼化合物经常作为添加剂应用到不同正极材料的锂离子电池中,在电池循环过程中,很多含硼化合物会在正极表面形成保护膜,来稳定电极/电解液之间的界面,从而提高锂电池性能。
2、有机磷添加剂
除了亚磷酸酯类添加剂,目前所用的有机磷类添加剂还包括磷酸酯类化合物。XIA等将三烯丙基磷酸酯(TAP)添加剂应用到Li[Ni0.42Mn0.42Co0.16]O2(NMC442)石墨全电池中,发现当有TAP存在时会显著提高库仑效率,长时间循环后,仍然具有很高的容量保持。
3、碳酸酯类添加剂
含氟皖基(PFA)化合物具有很高的电化学稳定性,同时具备疏水性与疏油性的特性,当PFA添加到有机溶剂中,疏溶剂的PFA会凝聚到一起形成胶团。锂电池在长时间循环过程中性能明显提高,这主要是因为添加剂在循环过程中形成了双层的钝化膜,同时减少电极表面的降解与电解液的氧化分解。
解液由电解质锂盐、高纯度的有机溶剂和必要的添加剂等原料组成,对电池的比容量、工作温度范围、循环效率和安全性能等至关重要。电解液占锂电池成本为5-15%,产品毛利率在25-30%。电解质锂盐主要是六氟磷酸锂,占电解液的成本40%。从未来发展趋势看,随着国产六氟磷酸锂产品品质及一致性的提升,出口比例将大幅增加。
以上就是锂电池电解液配方和锂离子电解液添加剂介绍,由于锂电池的应用领域越来越广泛,形形色色的锂电池对其电解液的要求也必然有所不同。