磷酸铁锂电池如何保存呢?影响存储性能因素有哪些?
来源:宝鄂实业
2019-05-05 16:30
点击量:次
锂离子电池经过30年的发展,比能量、比功率等性能有较大的提高,已成功应用于汽车上。受电池比能量限制,纯电动汽车续航里程有限,是制约发展的瓶颈,国外汽车厂近期规划以开发混合动力汽车为主。目前应用于锂离子电池的正极材料主要有锰酸锂、磷酸铁锂、钴酸锂、三元材料等材料,目前使用的功率型电池正极主要选用磷酸铁锂和三元两种材料。本文采用相同的电池壳盖、负极材料及内部结构设计,分别制作磷酸铁锂和三元两种正极材料的电池,比较两种电池的比能量、比功率、循环、高低温特性等性能,对比分析两种电池性能差异。
本文以圆柱型9Ah铝壳lifepo4磷酸铁锂石墨电池为研究对象,研究了电池在55/45/23和-10℃下存储过程中和存储后电池的容量、电压、交流电阻等的变化,并着重测试了电池在45/23℃下存储前后直流内阻、功率能力、恒流充入比、库仑/能量效率等的表征参数变化,并分析了这些参数变化对整车电池组性能的影响,给出了lifepo4磷酸铁锂石墨体系动力电池的最佳存储方式。
1 实验
1.1 实验材料选择
正极材料磷酸铁锂和镍钴锰配比为1∶1∶1 的三元材料,负极选用MCMB,电解液选用EC、PC、EMC 和DEC 组成的混合溶剂,电解质为LiPF6 作为锂盐,隔膜选用单层PP25 μm。
1.2 多孔膜电极与复合薄膜电极的制备
采用方形铝壳LP2770102 电池的壳、盖及内部相同的多极耳卷绕结构,按照电池制作工艺分别制作正极材料为磷酸铁锂和三元材料的两种电池。得到磷酸铁锂电池平均容量、内阻、质量分别为7.2 Ah、1.06 mΩ、361 g;三元材料平均电池8.6 Ah、1.12 mΩ、360 g。
1.3 分析与测试
测试条件为:三元材料电池充放电电压控制范围为2.5~4.2 V,1 C =7.5 A,磷酸铁锂材料电池充放电电压控制范围为2.0~3.65 V,1 C =6.5 Ah,无特殊说明测试温度为(25±2)℃。
2 结果与讨论
2.1 放电性能测试
可得出,相同体积电池,正极使用三元材料比使用磷酸铁锂材料放电容量高19.4%,比能量高37.5%,放电比功率高39.7%。由于三元材料质量比容量、压实密度均高于磷酸铁锂材料,所以使用三元材料电池放电有较大优势。
2.2 充电性能比较
从图2 和表2 可见,三元材料电池与磷酸铁锂材料电池在不大于10 C 充电时,恒流充电容量/ 总容量比例无明显差距,10 C 以上倍率充电时,磷酸铁锂电池恒流充电容量/ 总容量比例较小,充电倍率越大,恒流充电容量/ 总容量比例与三元材料电池差距越明显,这主要与磷酸铁锂在30%~80%SOC 是电压变化较小有关,如负极使用软碳或硬碳,磷酸铁锂电池大倍率充电性能够达到三元电池的水平。
2.3 循环性能比较
图3 中三元材料电池循环3 900 次剩余容量66%,磷酸铁锂电池循环5 000 次剩余容量84%,循环寿命比三元材料电池,磷酸铁锂电池优势明显。按照剩余容量/ 初始容量=80%作为测试结束点,目前三元材料电池实验室1 C 循环寿命在2 500 次左右,磷酸铁锂电池实验室1 C 循环寿命在3 500 次以上,部分达到5 000 次以上。
不同温度电池的放电比较如图4 所示。在55 ℃条件下放电,三元材料电池与磷酸铁锂在常温下比较,放电容量都没有差别,-20 ℃条件下放电,三元材料电池放电容量/ 常温容量比例比磷酸铁锂电池高15%,如表3 所示。
3 结论
本文通过制作相同结构的电池,得出三元材料与磷酸铁锂材料在HEV 电池应用优缺点,三元材料在电池比能量、比功率、大倍率充电、低温性能等方面有优势,循环性能方面则是磷酸铁锂材料优势明显,在安全方面磷酸铁锂电池也优于三元材料。在选用电池时可根据不同用途选择,如大巴车空间较大,对电池比能量和比功率要求相对较低,可选择磷酸铁锂材料电池,发挥其循环性能好的特性,轿车空间有限,电池用量小,则选用高比能量与高比功率三元材料电池更为合适。
试验以圆柱32131型铝壳lifepo4磷酸铁锂石墨电池为研究对象,额定容量9Ah,正、负极活性物质分别为lifepo4磷酸铁锂、人造石墨。45/55℃存储使用DHP200型电热恒温培养箱;低温使用低温冰箱;电性能测试设备为CT-3008W-5V100A-TF测试柜;交流内阻测试设备为HIOKI3554蓄电池内阻测试仪,AC1kHz。
电池的储存实验一
(1)选择≥60只单体蓄电池,在常温下,以4500mA(0.5C)电流在3.65~2V区间充放电循环3周,得到测试前电池的容量值,最后分别以100%、50%、0%SOC状态(每种SOC20只电池)结束,使容量达到稳定,搁置15h后,测量其电压、交流内阻等基本数据后待测;
(2)分别选择4只100%、50%、0%SOC状态共12只电池放人55℃烘箱中搁置28天;分别选择4只100%、50%、0%SOC状态共12只电池放入45℃烘箱中搁置28天;分别选择4只100%、50%、0% SOC状态共12只电池放入23℃空调屋中搁置28天;分别选择4只100%、50%、0% SOC状态共12只电池放人-10℃冰箱中搁置28天;搁置过程中,每7天对这些电池进行内阻和电压测试;
(3)搁置结束后,电池上测试柜,在常温下,以4500mA(0.5C)电流在3.65~2V区间放充电循环3周,得到存储后的电池容量。
数据与讨论:实验一存储28天过程中电池的电压、内阻、容量变化
图1中给出了实验电池存储28天过程中的电压(开路电压)变化,从图1可见不同温度、不同SOC状态下存储过程中开路电压变化并不明显,一致性最好的是在50%SOC态下,变化最大的是0%SOC态下。这与lifepo4磷酸铁锂石墨体系电池在不同SOC状态下的极化有很大关系,一般地,该系列电池在空电即0%SOC时极化最大,50%SOC极化最小。从图1中0%SOC不同温度下的电压变化关系也可见,温度升高有利于电池快速达到极化后的稳定状态。利用这一原理,在电池整车模组配组时,可以通过升温,快速将极化状态相近的电池挑选出来。
实验电池存储28天过程中的交流内阻变化如图2所示,从图2可见,交流内阻测试值随温度的升高而减小,这是由于温度越高,电池内部各个组分的导电能力越强。但经过存储后,恢复到常温再进行测试,所有电池的内阻均相差不大,但不同SOC、不同温度下存储后电池交流内阻变化还是比较明显的。45/55℃高温、100%SOC条件存储后的电池内阻增加明显较大,这是由于经过高温高SOC存储后,lifepo4磷酸铁锂/石墨体系电池中石墨负极表面的SEI增厚,电解质LiPF6微量分解,使SEI成份形成了阻抗较大的无机盐类如LiF等。
表1中列出了电池经过28天存储后容量的变化数据,从数据中可见,相比于高SOC态,低SOC更利于电池的容量存储,从数据中可见,除低温0%SOC、-10℃情况下容量有损失外,其他0%SOC态下的电池容量均有一定程度的增加,这一现象的出现可能是由于经过存储后,正极材料二次粒子颗粒开裂,形成了新鲜界面,重新具有了脱嵌锂离子的活性。实际上,这一现象也出现在不经存储而直接进行循环的电池,这些电池在初始的几十周循环过程中,容量也是在逐渐增加的。