在某些领域三元锂电池已经全面取代磷酸铁锂电池,是否能够证明三元锂电池更加优秀?
似乎这是一场已经分出结果的战争,尤其是国家补贴新政对电池能量密度提出要求之后,在小型乘用车领域,三元锂电池已经全面取代磷酸铁锂电池。但这是否能够证明三元锂电池比磷酸铁锂电池更加优秀,代表了未来电池的发展方向?
☆先来了解锂电池
我们现在使用的锂电池都是锂离子电池,此外还有锂金属电池,以锂金属或锂合金作为负极材料的一种电池,最早在1912年便由Gilbert N. Lewis提出,当时的锂金属电池为一次电池(不可充电),由于相比当时的其他电池,锂金属电池对加工、保存的要求高,因而没有成为主流。
而锂离子电池则比锂金属电池年轻许多,它采用锂的金属氧化物作为正极,于20世纪70年代诞生,但直到90年代,随着电子产品的快速发展,对高功率、高能量密度电池的需求增大,锂离子电池才开始成为主流。并且,锂金属电池随着技术发展,近来有开始复兴的趋势,但还未形成潮流,本文主要讨论的对象三元锂电池和磷酸铁锂电池均为锂离子电池,除此之外,算上钛酸锂电池,这三种电池是主流的车用动力电池。
☆锂离子电池的结构
锂离子电池的主要结构包括正、负极、电解液、隔膜和其他一些附件。其中正极材料是研究的重点,三元锂和磷酸铁锂均描述了锂离子电池的正极材料。而当前应用的负极材料主要为石墨,结晶度高,导电性好,对锂离子的容量大,达到了372mAh/g,大大超过了正极材料的容量,这也是为什么现在主要研究正极材料的原因。
锂电池的电解液与传统电池(铅酸电池、镍镉电池等)不同,不采用以水为溶剂的电解液,因为水的了理论分解电压只有1.23V(想想上一期的燃料电池单电池理想电压),因此,以水为电解液的电池电压最高不过2V左右。而锂电池的电压在3-4V左右。常用的电解质材料为无机阴离子锂盐,LiBF4、LiPF6、LiAsF6这三类。溶剂则有酯类、醚类和飒类。
隔膜则是起隔断电子和透过离子作用,使电子必须从外电路迁移,而离子则可以通过电解液移动,保证外电路有电流通过,防止电池内短路。隔膜材料有单层PE、单层PP、三层PP等。
☆锂离子电池充放电的基本原理
先明确两个概念,一,电池是将氧化还原反应的化学能转化为电能的装置。典型特征就是电极上反应物得失电子,通过外电路流动,进而便产生了电流。正负极之间的电荷传递是通过电解液中阴阳离子的运动形成的。
二,二次电池是指可多次再充放电的电池,其内部发生的电化学反应是可逆的。电池放电,内部的A物质变成B物质,化学能变成电能;而充电时,B物质又能够变回A物质,电能变成化学能储存。
充电时锂离子从正极材料的晶格中脱出经过电解质嵌入到负极材料层中;放电时锂离子从负极材料晶格中脱出,经过电解质嵌入到正极材料中。而电子则通过外电路,形成电流。
锂电池充放电反应过程为:
式中,Y为过度金属,在钴酸锂电池(LiCoO2)中Y为钴(Co),在锰酸锂电池中就是锰(Mn)。对于三元锂电池就是镍钴锰酸锂[Li(NiCoMn)O2]中的NiCoMn,对于磷酸铁锂(LiFePO4)电池,就是FePO4。
另外,正极负极指电位高低,阴极阳极则通过得失电子区分,得电子的电机发生还原反应是阴极,失电子发生氧化反应是阳极。充电和放电正负极不变,而阴阳极会反向。
对于锂离子电池而言,正极材料的开发是其关键技术。理论上,根据上述反应化学式,可以实现锂离子脱嵌的物质都可以作为正极材料,但实际上,这并非易事。出于性能考虑,它需要有良好的导电性、较大的放电倍率以及与电解质良好的相容性;出于寿命考虑,它需要有高度的可逆性和较弱的极化效应,出于安全考虑,它需要保证良好的稳定性和温和的电极过程动力学。
☆磷酸铁锂和三元锂电池
磷酸铁锂电池的特点在于安全性高,高倍率充放电特性和较长的循环寿命。文献显示,在充电条件为1C倍率充电至3.65V,然后转恒压至电流下降到0.02C,之后以1C倍率放电至截止电压2.0V,循环1600次之后电池容量仍有初始容量的80%。
PS:充放电倍率=充放电电流/额定容量;例如:额定容量为100Ah的电池用20A放电时,其放电倍率为0.2C。电池放电C率,1C,2C,0.2C是电池放电速率:表示放电快慢的一种量度。所用的容量1小时放电完毕,称为1C放电;5小时放电完毕,则称为1/5=0.2C放电。一般可以通过不同的放电电流来检测电池的容量。对于24AH电池来说,2C放电电流为48A,0.5C放电电流为12A。
其充放电特性也较为稳定,以0.5C、1C、3C不同倍率放电时,放电容量下降不到5%,电压在放电过程中有着较大的稳定平台,大倍率放电情况下的稳定性关系着电动车在急加速、高速等大功率需求工况下的性能表现,电压越稳定,车辆性能表现也越好,另外,这也可以解释为什么电动车高速行驶时续航能力会减弱,电池在大功率输出时,实际放电容量会缩小。
磷酸铁锂电池也拥有良好的快充特性,3C倍率充电条件下,15分钟可以充电55%,30分钟充个电容量超过95%。注意这是实验室条件,另外仅仅只是一块20Ah,3.65V标称电压的单电池,与车用400V左右电压100Ah及以上容量的电池组不能相提并论,两者的充电功率相差百倍以上。
除了寿命长,充放电性能优秀之外,磷酸铁锂电池最大的优点是其安全性,磷酸铁锂的化学性质稳定,高温稳定性好,700-800℃才会开始发生分解,且在面对撞击、针刺、短路等情况时不会释出氧分子,不会产生剧烈的燃烧,安全性能高。
但是,磷酸铁锂电池的缺点在于其性能受温度影响大,尤其是低温环境下,放电能力和容量均会大幅度降低。此外,磷酸铁锂的能量密度较低,仅算电池的重量能量密度只有120Wh/kg,如果计算整个电堆,包括电池管理系统、散热等零部件的能量密度就更低了。远远不能达到国务院发布的《节能与新能源汽车产业发展规划(2012-2020 年)》明确提出“电池模块的能量密度要求是大于 150 瓦时/公斤”的要求。
三元锂电池指的是含有镍钴锰三种元素的过渡金属嵌锂氧化物符合材料正极的锂电池,可用通式表示为LiMnxNiyCo1-x-yO2(0<x<0.5,0<y<0.5)。这种材料综合了钴酸锂、镍酸锂和锰酸锂三种材料的优点,形成了三种材料三相的共熔体系,由于三元协同效应其综合性能优于任一单组合化合物。重量能量密度能够达到200Wh/kg。
但是三元锂电池的安全性较差。三元锂电池热稳定性较差,250-300℃就会发生分解,遇到电池中可燃的电解液、碳材料后一点就着,产生的热量进一步加剧正极分解,在极短的时间内就会爆燃。车祸中,外力撞击会损坏电池隔膜,进而导致短路,而短路时发出的热量会造成电池热失控,并迅速将温度升至300℃以上,存在自燃风险。因此,对于三元锂电池而言,其电池管理系统、散热系统就至关重要。
为了提高产品的安全性,使用具有较强耐热性的材料,采用泄压阀控制电池内的压力、主动控制电池的电流,并且实时监测电池充电状态,并能够强制切断电流回路提高安全性。这些都是可行的提高三元锂电池安全性的措施。
基于安全性考虑,采用三元锂电池的新能源客车无法进入工信部的新能源车目录,而轿车、货车则不受影响。虽然有着安全顾虑,但因为政策对能量密度的规定,三元锂电池已经呈现取代磷酸铁锂电池趋势,成为乘用车的主流。
2017年工信部公布的8批共296款新能源乘用车中,采用三元锂电池的车型有221款,而采用磷酸铁锂的仅有33款。比亚迪曾是国内磷酸铁锂电池的领跑者,但从2016年起,旗下的新能源车,包括秦、唐等所有PHEV乘用车等都开始匹配三元锂电池,唯有大巴仍然采用磷酸铁锂。其资源也向三元锂电池倾斜,坑梓工厂三元锂电池产能6GWh,磷酸铁锂电池产能8GWh,而新建的青海工厂的三元锂电池产能更是将达到18GWh。
迄今为止,三元和磷酸铁锂电池还未能够分出胜负,三元锂电池略占上风,但两者至少在现阶段都不是完美的解决方案,石墨烯或者燃料电池等其他替代能源技术都在一旁虎视眈眈。
经过最近几年的淘汰,当前动力电池市场上,主流的正极材料只剩下锰酸锂,磷酸铁锂和三元锂三种。它们各有所长,又有自己的缺点。随着市场的发展,技术的进步,新材料的诞生,升级和淘汰仍然在进行中。
正极材料的安全性,能量密度和功率密度是当前不同车型对锂电池类型做出取舍的基本依据。
1 对正极材料的基本要求
能够得到广泛应用的正极材料,必须满足下列要求。
第一,材料自身电位高,这样才能与负极材料之间形成较大的电位差,带来能量密度高的电芯设计;同时带电离子嵌入脱出对电极电位影响小,则充放电过程,不会有过大的电压波动,不会给系统内的其他电气带来不利影响。
第二,材料含锂量高且锂离子嵌入脱嵌可逆。这是高容量的前提。有些正极材料,理论容量很高,但是有一半的锂离子,第一次嵌入以后就失去了活性。这样的材料,是无法投入商用的。
第三,锂离子扩散系数大,锂离子在材料内部的移动更迅速,嵌入和脱嵌的能力强。是影响电芯内阻的因素,也是影响功率特性的因素。
第四,材料比表面积大,有大量的嵌锂位置。表面积大,锂离子的嵌入通道相对较短,则嵌入和脱嵌更容易。通道浅的同时,嵌锂位置还要充足。
第五,与电解液的相容性和热稳定性好,这点是出于安全性考虑。正极材料与电解液不容易发生反应,以及在较高温度下依然结构稳定并且仍然不易与电解液反应。这样的材质,不会为电芯额外的热积累提供热量,可以减少电芯进入自生热阶段的概率。
第六,材料易得,且加工性能好。成本低,材料容易加工成电极,且电极结构稳定,是材料得到推广应用的有利条件。
2 什么决定了正极材料的安全性
首先,电芯设计中正极材料用量远远大于负极材料的容量,会提高热失控风险。一般的正极材料,锂离子含量都会大于负极材料离子容量,目的是提高电池的功率特性和循环性。但过多的锂离子存储于正极结构中,当外部保护电路失灵,电池发生过充时,容易引发事故。过充,负极材料结构中已经充满了锂离子,再没有位置容纳更多。但正极中多余的锂离子仍然会在外加电压的驱使下,向负极聚集。造成大量锂离子在负极表面沉积,形成锂单质结晶。活泼的锂单质遇到高温会剧烈反应;或者单质量过大,则会刺穿隔膜,造成内短路,给电池带来燃爆风险。
其次,材料的热稳定温度越高,说明材料的氧化能力越弱,材料越安全,如下面表格所示,自上而下,越来越安全。正极材料长期浸泡在电解液中,表面的保护膜并不能像负极一样,起到很好的保护作用。因此,确保正极材料与电解液不发生反应的因素主要依靠正极材料自身的热稳定性和与电解液的相容性。
3 正极材料对锂电池性能的影响
电芯能量密度
每种正极材料都有其理论能量密度,选择了一种正极材料,就选择了电芯能量密度的上限。正极材料的用量设计和加工制作过程中的振实密度也对电芯成品的能量密度产生影响。
电芯功率密度
不同的正极材料种类,决定了电池充放电功率的大体范围。材料的一些细节,作为辅助因素,也会对功率特性造成影响。比如,正极材料的晶体结构稳定性,颗粒尺寸,掺杂原子,碳包覆工艺,材料的制备方法等。以上因素最终都是通过影响正极材料容纳锂离子的能力和脱嵌嵌入通道的通畅性来影响锂电池的功率密度。
电芯循环寿命
影响电芯循环寿命的因素很多,与正极材料相关的,主要有正极材料活性物质在循环使用中的损耗,以及充放电过程中,材料结构的崩坏引发的正极容纳锂离子能力的衰减。而正极材料中的杂质成分,比如单质铁和三价铁,都会与电解液相互作用,产生不良副反应,或者造成内部微短路。
4 三种主流正极材料重要特性
4.1 锰酸锂
锰酸锂,作为使用历史比较长的一种锂电池材料,其安全性高,尤其抗过充能力强,是一大突出优点。由于锰酸锂自身结构稳定性好,在电芯设计时,正极材料的用量不必超越负极太多。这样,使得整个体系中的活性锂离子的数量不多,在负极充满以后,不会有太多的锂离子存于正极。即使出现了过充情形,也不会出现大量锂离子在负极沉积形成结晶的状况。因而,锰酸锂的耐过充能力在常用材料中是最好的。
另外,材料价格低廉,并且对生产工艺要求相对不高,是比较早取得广泛应用的正极材料。
但它也存在着明显的缺陷。尖晶石锰酸锂的高温性能不佳。氧缺陷的存在,使得电芯在高电压阶段容易出现容量衰减,同时,在高温下进行循环使用,也会造成类似的容量衰减。原因出在引发歧化效应的三价锰离子身上。防止高温衰减的方式主要集中在减少三价锰这个点上。
锰酸锂,受限于其高温性能,一般不会用在大功率或者环境温度高的场合,比如高速乘用车、插电混动等就很少选用锰酸锂作为动力。但对于电动大巴,市内物流车等,锰酸锂完全可以胜任。
4.2 磷酸铁锂
磷酸铁锂的优点主要体现在安全性和循环寿命上。主要的决定因素来自于磷酸铁锂的橄榄石结构。这样的结构,一方面导致磷酸铁锂较低的离子扩散能力,另一方面也使它具备了较好的高温稳定性,和良好的循环性能。
磷酸铁锂的缺点也比较明显,能量密度低,一致性差以及低温性能不佳。
能量密度低是材料自身的化学性质决定的,一个磷酸铁锂大分子只能对应容纳一个锂离子。
一致性,尤其是批次稳定性差,除了与生产管理水平有关,还与其自身的化学性质有关。磷酸铁锂是各种锂电池正极材料中比较难于制备的一种。这种化学反应一致性和均匀性的高难度,同时又带来了另一个问题,磷酸铁锂材料中的铁单质和铁离子杂质始终存在,给电池带来了失效隐患。
磷酸铁锂电池,由于其安全性高,虽然能量密度部分的影响了它的使用范围,但仍然是当前我国电动汽车的主要动力锂电池品种。尤其涉及到大量人员生命安全的公交车,国家政策强制要求使用磷酸铁锂电池。
4.3 三元锂
三元锂正极材料,综合了LiCoO2、LiNiO2和LiMnO2三中材料的优点,在同一只电芯内部形成协同效应,兼顾了材料结构的稳定性、活性和较低成本三个要求,是三种主要正极材料中能量密度最高的一种。其低温效果也明显的好于磷酸铁锂电池。
三种元素中,Ni的含量越高,则电芯的能量密度越高,同时,电芯的安全性越低。在实际应用中,三种材料在电芯中的比例关系,随着时间的推移一直在发生变动。人们对能量密度的追求越来越高,因而Ni 的占比也越来越高。
三元材料被提及最多的缺点就是安全性,发生热失控的过程中,其副反应的产物中包含大量气体,使得事故的危险性和可蔓延的能力大大提高。其次,三元材料的循环寿命也是一个瓶颈,目前还达不到磷酸铁锂的水平;最后,由于三元材料特殊的微观结构,使得它不适合高压力压实的操作,因而通俗的提高能量密度的加工方式对于它不适用。
三元材料市场份额正在逐渐扩张,主要动力来自于对汽车续航里程的追求。想要赶上甚至超越燃油车的续航,电动汽车必须在有限的空间内装上尽量多的电量,这就使得能量密度变得尤其重要。而去年国家出台的补贴政策,也是出于激励高能量密度电芯研发的目的,对能量密度设置了门槛,进不来的就没有补贴。从整车厂到pack厂再到电芯厂商,每个环节都必须顺应提高产品能量密度的大趋势,于是三元锂电池得到越来越多的应用。电池本身安全性能的改进和系统监控处理事故能力的提高,也会推进三元锂电池市场扩张的脚步