定制热线: 400-678-3556

电池知识

手机锂电池的发展遇到了什么瓶颈?究竟是什么制约着锂电池的发展?

来源:宝鄂实业    2019-05-14 16:38    点击量:

手机电池的发展遇到了什么瓶颈?
要回答这个问题,首先要知道手机电池到底要发展什么,或者用户的诉求是什么?无非就是这两个方面:一个是电池容量大小,还有一个就是充电速度。

先来说说电池容量,大部分用户为了续航会追求更大的电池容量,那么电池容量的大小是由什么因素来决定的?电池容量x电池电压=电池能量密度x电池体积。电池体积又受到这几个方面的影响,一个是整机的大小,一个是机身的厚度,还有一个就是一些细节设计,比如 OnePlus 3T 的设计规范是为了电池安全,电池不能离手机外框轮廓太近,以免手机跌落时损坏电池,这样电池体积就有可能缩水。所以决定电池容量大小的因素就是电池能量密度+电池体积。

这样看起来是不是很简单?我们只要单纯地提升电池能量密度或者把机身做厚、电池体积增大就可以提升电池容量了,那为什么现在很难做到呢?

这个又要从三方面说起,一个是“安全”,一个是“材料”,还有一个是“平衡”。

先来说提升电池能量密度的风险,为了保证电池的容量足够大,电池能量密度肯定是越大越好,但是任何事情都是物极必反的,电池能量密度增加也有可能带来风险。

电池能量密度增加的风险主要有这几个方面,一个是手机从结构上来说是一个很理想的爆炸体,另一个是提升能量密度过程中的工艺更改带来的不确定性。学理科的同学都知道爆炸的原因就是能量聚集在一个密闭的空间内扩散不出去,所以手机是一个很典型的“爆炸体”,尤其是金属手机。现在很多手机都做了防水,内部会更加密闭,所以手机内部如果有什么剧烈的化学反应的话,非常容易爆炸。爆炸的威力就跟电池的容量有关,所以电池能量密度越高的话,在手机这个小空间内,爆炸的威力就越大;还有一些问题不是电池能量密度本身的,而是厂商为了追求电池能量密度,会适当地更改电池的制作工艺,这些更改可能引进一些安全问题。举个例子:电芯内部有一层隔膜用来隔离电芯的正负极,一旦隔膜戳破就会导致正负极材料短路产生剧烈的化学反应,从而引起起火爆炸。但是,隔膜对电芯的容量是没有贡献的。所以,为了提高电池容量,需要将隔膜减薄,这个必然会在一定程度上提高电池发生危险的可能性。所以,对于一种新工艺电池,没有经过市场大规模验证,我们不认为它是一个成熟可靠的产品,哪怕厂家多有信心,实验室数据多完美。

那么“材料”和“平衡”呢?

这是一个行业性的问题,电池的能量密度提升遇到了很大的困难,除非换掉电池的材料,我们现在所使用的锂电池的能量密度基本短期内已经很难有重大发展了。

平衡的话要从好几个方面说起,一个是充电速度,现在我们 3400mAh 的电池采用了 4A 的适配器充电,这已经很高了,再往上提高充电电流的话,电池就会发热,但是现在手机机身发热也是一个很严重的问题。如果想降低电池的发热,又得降低电池的内阻,但是降低内阻就需要加宽或加厚导体,这就会导致电池能量密度也降低了,这就成了一个矛盾体。那如果增大电池体积呢?这样的话机身厚度、大小又有可能增加很多,对于现在追求“手感”“纤薄”的用户来说,似乎也是行不通的。

所以电池发展遇到的瓶颈不是说某一方面做不到,而是要同时兼顾到这几个因素:电池能量密度、充电速度、安全性、体积,这几个是一个平衡体。强制去提高某一项肯定可以做到,比如说单纯只提升电池能量密度,但是提高了就会下降另外一项,不可能所有都追求完美,只能取一个平衡点,这就是困难之处。


商业化的锂离子电池原理也很简单,人尽皆知:锂离子在正负极之间来回穿梭,简称“摇椅”电池。
但是答主却花费了大量时间来研究这个东西(的一部分),甚至电化学这整一门学科也一直贯穿在锂离子电池这个领域,难以自拔。究其原因:系统太过复杂。
但就跨越的学科而言,这个领域至少囊括了以下维度:
1.材料化学
2.固体物理(含结构化学)
3.电化学
4.化工原理
然而因为现在生活方式对于掌上设备是这样的依赖软件功能发展是这样的迅速互联网上的生活是这样的精彩,人们才意识到,花擦,怎么老是要充电?这傻逼扁片怎么这么难伺候?
锂离子电池的能量密度成为了你掌上生活挥之不去的附骨之蛆,a real pain in the ass······
然而,任何事物发展都是有(大量的)时间积累,电池也赫然在列。
熟悉科学史的朋友都知道,在1940年以前,锌锰类(Zn/MnO2)的一次电池牢牢占据着电子消费类产品的市场,直到60年代那会,碱性锌锰电池(Zn/KOH/MnO2)还是消费类的大当家,不过质量能量密度已经可以从40Wh/kg提升到100Wh/kg了,当然,即便是现在,碱性锌锰电池这种一次电池因为自身的低成本,还是能在很多地方得到发挥。然后就是一次的锂/二氧化锰电池(Li/MnO2等等)和锌空气电池(Zn-Air)在70年代的悄然冒头(其实人家也是在实验室内不断成熟完善),直接把质量比能量翻了一倍,提升到了250Wh/kg的水平。再来到80年代,一次的锂/二氧化硫(Li/SO2)和锂亚硫酰氯(Li/SOCl2)电池在特殊领域被开发出来,而电池的质量比能量直达380Wh/kg。而事实上,干性聚合物电解质锂电池在80年代业已萌芽,它们的质量能量密度范围大致在220~280Wh/kg内,只不过这个分支一直处在研发阶段而且被视作二次电池手机容量的问题,主要取决于材料。不是不可能提高,而是新材料的研发需要一定的时间。现有的商业产品都是对比千万种材料,才获得的结果。相比于工艺的发展,材料的改进需要较为漫长的时间。
第一块锂电池至1991年上市才25年。正极为钴酸锂,负极为石墨。
现有的正极材料还有三元材料,锰酸锂,磷酸铁锂这3种。其他的都还在研发中。这三类材料都不能完全取代钴酸锂,所以研发中的材料基本还在找。负极也是。所以在没有材料的重大突破中,大家的工艺都只是在“修修补补”。
对于新材料的研发,大家一直都在元素周期表上寻找。比如便宜点的钠离子电池,容量高一点的镁离子电池,铝离子电池等,或者锂空气电池,锂硫电池。但是这些体系的建立,需要大量的基础研究。虽然有很多天才加入,但是大量的人才都涌入到价格更高的计算机金融行业。甚至有所谓的过来人,还劝说学材料的人赶紧跳出坑。所以当吃瓜群众说电池容量怎么不能快速提高的时候,我想说,你行你上呀。
不过呢,主要原因还是化学所利用的只是核外价电子,对于内层电子利用不到,导致能量的不足。怎么利用内核电子呢?这是物理学家的事^_^