定制热线: 400-678-3556

电池知识

电池使用过程中形成不可逆硫酸盐化的主要原因是什么?

来源:宝鄂实业    2019-05-26 21:38    点击量:

一、电池的原理

 

  在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。

 

  1、负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。

 

  2、正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。

 

  电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。

 

  当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。

 

  因此,电极反应可逆是构成蓄电池的必要条件。为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安·小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是以致电池能量损失的重要原因之一。

 

  极化的原因有三:

 

  1、由电池中各部分电阻以致的极化称为欧姆极化;

 

  2、由电极-电解质界面层中电荷传递过程的阻滞以致的极化称为活化极化;

 

  3、由电极-电解质界面层中传质过程迟缓而以致的极化称为浓差极化。

 

  减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。

 

  二、电池短路的危害

 

  无论是电池短路还是用电的短路,由于短路产生的过多的电热,它的温度非常高,在断路之前,足以融化一般金属,可能会以致火灾,也可能会烧坏用电器,使得财产和生命安全受到威胁。

 

铅酸电池的硫酸盐化的原因与危害是什么

 

  硫酸铅在形成之后一段时间内活性较高,如果在这一段时间内没有及时充电或者充电不完全,使它未及时转化为正负极活性物质,硫酸铅则会在温度低时再重新结晶,在结晶质硫酸铅上析出,这样一次又一次地重复,使结晶颗粒不断增大,成为导电性能差、难以溶解、充电时难以恢复的硫酸铅结晶,即通常所说的不可逆盐化(本手册所称的盐化均指此类盐化)。电池失效的原因有多种,如致命的电极板栅腐蚀、电极板栅的严重变形、电极活性物质的脱落、电池内部短路或断路等理化原因,但是,统计表明,绝大多数电池的失效都是由电极活性物质的不可逆硫酸盐化造成的。这种盐化物在充电时难以恢复为二氧化铅及海绵状铅,对电池具有很大的危害:

 

  它的形成消耗了活性物质,使电池的有效容量降低,长期如此将导致电池报废;不仅它本身在充电时难以恢复,而且会阻塞多孔电极的空隙,妨碍电解液通过,增加内阻;充放电时发热更多,电池温度升高,会加大极板的腐蚀与变形,使活性物质脱落导致电池的结构性报废;使充电效率下降,充电时间延长,造成时间及能源的浪费;导致更严重的电解水现象,电池容易失水干涸;由于容量下降,输出功率不足,为保持一定的输出就只能加大放电深度,会造成硫酸盐化更加严重,形成恶性循环;由于消耗了硫酸,导致电解液密度下降,大电流放电能力降低,性能下降。

 

  电池使用过程中形成不可逆硫酸盐化的主要原因包括:

 

  经常性的深度放电及过放电,没有及时充电或充电不足;在亏电状态下电池长期搁置不用即贫存;电池组中电池性能不一致,存在差异过大的落后电池;表现为电池组中某一个电池的容量明显低于其它电池,造成整个电池组电压下降,充电时落后电池因最先被充满而其余电池仍需充电而形成过充电,放电时该落后电池又因最先被放空从而形成过放电,从而导致硫酸盐化进一步加剧,使得落后程度更加严重,形成恶性循环;电解液密度过大;电池环境温度的变化。
 

产品相关推荐