动力锂电池分类,结构以及主要性能比较
带您三分钟了解动力锂电池分类。
新能源汽车动力电池可以分为燃料电池和二次电池(包括铅酸电池,锂电池,镍氢电池,镍镉电池)。
锂电池工作原理
锂电池按照正负极使用的材料不同,通常分为以下两大类 :
锂金属电池其性质不够稳定而且不能充电,所以不属于二次电池。对于新能源汽车来讲,我们平时说的锂电池,就是指锂离子电池。
锂金属电池,也就是使用二氧化锰为正极材料,金属锂或其合金金属为负极材料的电池;锂离子电池,使用锂合金金属氧化物为正极材料,石墨为负极材料电池。
锂离子电池的工作原理,如下图:
锂离子电池主要由正极(含锂化合物),负极(碳素材料),电解液,隔膜四个部分组成:
电池充电时,正极上锂原子电离成锂离子和电子(脱嵌),锂离子经过电解液运动到负极,得到电子,被还原成锂原子嵌入到碳层的微孔中(插入);
电池放电时,嵌在负极碳层中的锂原子,失去电子(脱插)成为锂离子,通过电解液,又运动回正极(嵌入);
锂电池的充放电过程,也就是锂离子在正负极间不断嵌入和脱嵌的过程,同时伴随着等当量电子的嵌入和脱嵌。锂离子数量越多,充放电容量就越高。
分类
因正极材料不同,锂离子电池主要分为:磷酸铁锂(LFP),镍酸锂(LNO),锰酸锂(LMO),钴酸锂(LCO),以及镍钴锰酸三元锂(NCM)、镍钴铝酸三元锂(NCA),负极材料主要采用石墨碳材料。
各类型的化学成分,结构以及主要性能比较如下:
技术路线
基于上表,不同类型锂电池存在不同的应用市场情况。
钴酸锂作为锂电池的鼻祖,当然也可能是作为动力电池先试试水,最先用在特斯拉Roadster上,但由于其循环寿命和安全性都较低,事实证明其并不适用作为动力电池。为了弥补这个缺点,特斯拉运用了号称世界上最顶尖的电池管理系统来保证电池的稳定性。钴酸锂目前在3C领域的市场份额很大。
锰酸锂电池,主要最先由电池企业AESC提出,这个AESC来头可不小,是日产和日本电气股份有限公司(NEC)的合资。锰酸锂代表车型是为日产聆风,由于其价格低,能量密度中等,安全性也一般,具有所谓的较好综合性能。所谓成也萧何败也萧何,也是正因为这种不温不火的特性,其逐步被新的技术所替代。
磷酸铁锂作为比亚迪的主打,其稳定好,寿命长,且具有成本优势,特别适用于需要经常充放电的插电式混合动力汽车,但其缺点是能量密度一般。
三元锂电池,作为冉冉升起的新星,能量密度可达最高,但安全性相对较差。对于续航里程有要求的纯电动汽车,其前景更广,是目前动力电池主流方向。
总结来说,锂电池的充电过程,大致划分为四个阶段,即1-涓流充电;2-恒流充电;3-恒压充电;4-停止充电。
涓流充电,所谓涓流,我们可以联想到一个词语:“涓涓细流,汇聚成海”,即涓流充电就是小电流充电。这个小电流取多少合适呢?一般我们取0.1C即可,C代表电池容量,比如华为最新出的手机P30 Pro就配置了4200mAh容量的电池,那么0.1C就是420mA。但是我们在给手机充电的过程中,好像并没有这个过程,每次插上充电器都是立马开始快充,曾经OPPO 手机的广告语“充电五分钟,通话两小时”更是说明了手机充电没有这个过程。那么涓流充电的意义何在呢?这是因为锂电池存在电量过放的可能(过放点一般取3V),被过放的电池存在损坏的可能,所以我们需要用小电流来进行试探电池的是否正常。一段时间后,如果电池电压超过3V,那么我们就认为电池状态为正常,即可进行下一阶段充电,否则就认为电池不正常并放弃充电。
恒流充电,即充电电流恒定,就是我们常说的CC模式。恒流充电我们电流需要恒定,一般取充电电流在0.2C-1C之间,注意不要超过1.5C,否则对电池会有较大的损伤。这个过程中,电池的电压会不断上升,直达电池电压达到4.2V后进入恒压充电阶段。
恒压充电,即充电电压恒定,就是我们常说的CV模式。恒压充电过程充电电流不断下降,一直到电流低于0.1C后,截止充电。有些人不理解为何电流会不断下降,我们用一个公式来描述,假设输入电压是Vin,电池电压是Vbat,电池内阻是R,那么充电电流就可以表述为如下公式:
从公式分析,Vin不变,Vbat在充电过程中不断上升,R不变,这样Ibat就会随着Vbat的上升而不断下降。
停止充电,当恒压充电完成后,我们便可以停止充电。
以上就是锂电池充电的四个阶段,图(1)描述了整个充电过程,纵坐标是电池充电电流,横坐标是电池电压,有些人可能会认为这个图错了,恒压充电怎么电压一直是4.2V呢?电池电压应该增加才对啊?
锂电池正极材料
锂离子电池是性能卓越的新一代绿色高能电池,已成为高新技术发展的重点之一。锂离子电池具有以下特点:高电压、高容量、低消耗、无记忆效应、无公害、体积小、内阻小、自放电少、循环次数多。因其上述特点,锂离子电池已应用到移动电话、笔记本电脑、摄像机、数码相机等众多民用及军事领域。
锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3:1~4:1),因为正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。
锂电池正极材料新型干燥及煅烧技术
采用微波干燥新技术干燥锂电池正极材料,解决了常规锂电池正极材料干燥技术用时长,使资金周转较慢,并且干燥不均匀,以及干燥深度不够的问题
具体特点有:
采用锂电池正极材料微波干燥设备,快捷迅速,几分钟就能完成深度干燥,可使最终含水量达到千分之一以上
采用微波干燥锂电池正极材料,其干燥均匀,产品干燥品质好。
采用微波干燥锂电池正极材料,其高效节能,安全环保。
采用微波干燥电池正极材料,其无热惯性,加热的即时性易于控制。
电涂层的应用使薄膜印刷电池应运而生。导电涂层将纳米技术引入到了电池产品中,对锂电池领域的发展起到极为关键的作用,而在高速发展的移动计算领域,锂电池无疑扮演着十分重要的角色。当前,对节能工具的需求正飞速增长,合理使用能源,即节能的需求也日益紧迫,在这个背景下,导电涂料领域与市场势必将更为重要,更具潜力。
电涂层可提高电接触,从而减少内阻、提高倍率、改善放电效率并延长循环寿命。涂层的功能就如嵌入电池中的导电垫片一样,可确保接触界面的"气密性"电连接。除此之外,涂层还可为电池提供一层坚实的化学屏障,保护电池不被氧化或免受化学侵蚀,也杜绝了自行放电、散热与漏电现象的发生,同时也延长了上述能源设备的使用寿命。随着导电涂层在电池中的应用,电池产品不仅可保留良好的导电性,还可选择成本更低的轻型无镀层金属作为电池生产原料,使电池产品得重量与价格均有了大幅下降。
锂电池涂碳铝箔使用说明
一、材质说明
涂碳铝箔是由导电碳为主的复合型浆料与高纯度的电子铝箔,以转移式涂覆工艺制成。
二、应用范围
细颗粒活性物质的功率型锂电池
正极为磷酸亚铁锂
正极为细颗粒的三元/锰酸锂
用于超级电容器、锂一次电池(锂亚、锂锰、锂铁、扣式等)替代蚀刻铝箔
三、对电池/电容的性能作用
抑制电池极化,减少热效应,提高倍率性能;
降低电池内阻,并明显降低了循环过程的动态内阻增幅;
提高一致性,增加电池的循环寿命;
提高活性物质与集流体的粘附力,降低极片制造成本;
保护集流体不被电解液腐蚀;
提高磷酸铁锂电池的高、低温性能,改善磷酸铁锂、钛酸锂材料的加工性能。