教你锂电池类型和容量选择
首先要根据自己电机功率(需要实际功率,一般骑行速度会对应一个相应实际功率)来计算电池需要提供的持续电流。比如电机持续电流20a(48v下1000w电机),那么就需要电池可以长时间提供20a电流而温升很低(哪怕夏季外面35度温度,电池温度也最好控制在50度以下)。另外如果48v下20a电流,超压一倍(96v,比如ecpu 3档)后持续电流到50a左右。如果喜欢长时间超压使用,那么请选用能持续提供50a电流的电池(还是注意温升问题)。这里的电池持续电流不是商家标称的电池放电能力。商家标称几C(或几十几百安培)都是电池放电能力,而真的在这种电流下放电,电池发热很严重的,如果不做好散热,电池寿命会很短。(而我们电动车使用电池环境是电池扎堆排放,基本不留空隙,包的很严实,更别提怎么做好强行风冷散热了)。我们的使用环境很恶劣。电池放电电流需降额使用。评价电池放电电流能力就是看这个电流下电池对应温升是多少。
这里论述的唯一原则其实是使用过程中电池的温升(高温是锂电寿命死敌)。最好电池温度控制在50度以下。(20-30度之间最好)。这也意味着如果是容量型锂电(控制在0.5C以下放电),提供20a的持续放电电流需要40ah以上容量(当然最主要是要看电池内阻)。如果是动力型锂电,按照1C持续放电是正常的。哪怕A123超低内阻动力型锂电,也平时最好在1C放电(不超过2C为好,2C放电其实只能放半个小时就没电了,没太大使用价值)。容量选择就看车子存放空间大小,个人支出预算,期望车子活动范围大小等因素。(小容量的一般必须动力型锂电)
根据电池容量和设备功率算使用时间:
使用时间(H)=(电池容量(AH)/2)÷使用电流(A),使用电流(A)=设备功率(瓦.W)÷电压(6V或12V)
比如:12V7AH的电池,带12瓦(W)的节能灯,使用电流(A)=12W÷12V=1A,
使用时间(H)=(7AH÷2)÷1A=3.5H,也就是3个半小时。
注意:以上仅为估算数值,实际数据根据不同条件测试会有较大误差。
如果不能及时发现存在问题的蓄电池,将影响系统安全供电,有可能带来灾难性后果。所以让每一块蓄电池时刻处于完好状态是蓄电池监测管理的最主要的目的。目前,蓄电池运行中存在的隐患主要有:
1)蓄电池寿命无法达到设计要求
目前我们使用的蓄电池或许存在这样的问题:在蓄电池安装时,蓄电池的厂家称阀控铅酸蓄电池在浮充下的使用寿命可以达到10年以上,但在实际中,蓄电池可能在2-3年左右就出现劣化,以致使用不到5年的蓄电池就得淘汰。有的蓄电池甚至工作半年就出现异常。
2)蓄电池浮充下缺乏温度补偿
由于蓄电池的工作环境比较复杂,而环境温度对于蓄电池的影响,特别是电压、电流的影响较大。在25℃以上,每增加1℃,蓄电池充电电流将会增加10%,蓄电池失水将会增加1.5%。
3)对于蓄电池的运行情况、性能状况不明
由于没有良好的手段以及管理,蓄电池的使用者对于蓄电池的运行情况缺乏足够的了解,特别是对于蓄电池历史数据的整理以及分析。
4)蓄电池管理维护的理念和方法需要改进
很多蓄电池的维护人员,受到蓄电池厂家的误导,认为“免维护”就是无需维护,其实“免维护”仅仅是不需要定期对蓄电池进行加水。或者是对蓄电池的监测仍然停留在人工定期监测的办法,耗费了大量的人力和实践,而且危险性较高。
另外,从经济效益和社会效益上讲,管理蓄电池可以延长整个电池组的使用寿命,减少蓄电池更换量,从而节省费用,也利于环境保护。目前国内很多用户在电池使用一半寿命时就被全部更换掉,实际此时绝大部分电池还是完好的,这样被白白扔掉实在是严重的浪费。
针对上述蓄电池日常维护中的难题,北京群菱已经开发出8个系列近100款产品
1.蓄电池容量检测设备:满足各种电压、3000AH以下蓄电池组容量检测、容量验证;
2.蓄电池充放电检测设备:充放电流0-300A可调节、电压0-800V可选择、放电充电自动切换,同时具有恒流放电、单体电压监测、快速容量分析、智能充电、整组活化功能;
3.蓄电池充电机:便携式、可移动,可作为备用充电设备,满足各种现场使用,操作简单;
4.单体蓄电池活化仪:通过对落后单体进行在线、离线放电、充电及活化,有效提升落后电池容量;
5.蓄电池内阻/电导测试仪:快速测量蓄电池内阻、电导值,判断电池健康状态,有效排查隐患;
6.蓄电池组全在线充放电设备:无需脱离系统,全在线放电、充电检测,安全维护检测电池;
7.铁锂电池性能检测设备:各种铁锂电池的容量检测、储电性能验证检测、日常维护检测;
8.蓄电池在线监测管理系统:在线实时监测、记录储存电池的内阻、电压、电流、温度,及放电、充电历史数据,实现电池智能化管理。
三元锂电池是锂电池的一种:主要是指做电池的正极材料,。通常锂电池的正极材料是钴酸锂。
三元锂电池在容量与安全性方面比较均衡,是一款综合性能优异的电池。三种金属元素的主要作用和优点如下:
Co3+:减少阳离子混合占位,稳定材料的层状结构,降低阻抗值,提高电导率,提高循环和效率性能。
Ni2+:可提高材料的容量(提高材料的体积能量密度),而由于Li和Ni相似的半径,过多的Ni也会因为与Li发生位错现象导致锂镍混排,锂层中镍离子浓度越大,锂在层状结构中的脱嵌越难,导致电化学性能变差。
Mn4+:不仅可以降低材料成本,而且还可以提高材料的安全性和稳定性。但过高的Mn含量会容易出现尖晶石相而破坏层状结构,使容量降低,循环衰减。
三元锂电池优点
1、电压平台高
电压平台是电池能量密度的重要指标,决定着电池的基本效能和成本,因此对电池材料的选用,有重要的意义。电压平台越高,比容量越大,肯定同样体积、重量,甚至同样安时的电池,电压平台比较高的三元材料锂电池续航里程更远。三元材料的电压平台明显比磷酸铁锂高,高线可以达到4.2伏,放电平台可以达到3.6或者3.7伏。
2、能量密度高
能量密度高是三元锂电池的最大优势,而电压平台是电池能量密度的重要指标,决定着电池的基本效能和成本,电压平台越高,比容量越大,所以同样体积、重量,甚至同样安时的电池,电压平台比较高的三元材料锂电池续航时间更长。
3、振实密度高
振实密度是指在规定条件下容器中的粉末经振实后所测得的单位容积的质量。振实密度或者说体积密度(在一些工业领域称为松装密度)定义为样品的质量除以它的体积,这一体积包括样品本身和样品孔隙及其样品间隙体积。
三元锂电池缺点
安全性差、耐高温性差、寿命差、大功率放电差。安全性较差和循环寿命较短是三元锂电池的主要短板,尤其是安全性能,是一直限制其大规模配组,和大规模集成应用的一个主要因素。大量实测表明,容量较大的三元电池很难通过针刺和过充等安全性测试,这也是大容量电池中一般都要多引入锰元素,甚至混合锰酸锂一起使用的原因。500次的循环寿命在锂电池中属于中等偏下,因此三元锂电池目前*主要的应用领域是3C数码等消费类电子产品。