定制热线: 400-678-3556

电池知识

什么叫软包锂电池?软包电池八大性能优势介绍

来源:宝鄂实业    2019-07-07 18:51    点击量:

什么叫软包锂电池

软包锂电池软包电池是聚合物电池的另一种叫法,与锂离子电池相比,具有体积小、重量轻、比能量高、安全性高、设计灵活等多种优点。我司可根据客户的具体需求及软包电池芯供应情况定制各种尺寸的软包电池。

软包锂电池只是液态锂离子电池套上一层聚合物外壳。在结构上采用铝塑膜包装,在发生安全隐患的情况下软包电池最多只会鼓气裂开。

 

软包电池八大性能优势:

1.安全性能好 磷酸铁锂和锰酸锂软包装电池在结构上采用铝塑软包装,有别于液态电芯的金属外壳,一旦发生安全隐患,液态电芯容易爆炸,而磷酸铁锂和锰酸锂电芯最多只会鼓涨。

2. 厚度小,能做得更薄 普通液态锂电采用先订制外壳,后塞正负极材料的方法,厚度做到3.6mm以下时存在技术瓶颈,磷酸铁锂和锰酸锂电芯则不存在这一问题,厚度可做到2.5mm以下,符合时下电动自行车需求方向。

3. 重量轻 磷酸铁锂和锰酸锂软包装电池重量较同等规格的钢壳磷酸铁锂电池轻40%,较塑壳电池轻20%。

4. 容量大 同等规格的磷酸铁锂和锰酸锂软包装锂电池较钢壳电池容量高10-15%,较铝壳电池容量高5-10%,成为电动摩托车及电动汽车的首选,现在市面上新出的电动摩托车及电动汽车也大多采用磷酸铁锂电芯。

 

5. 内阻小 磷酸铁锂电芯的内阻一般较钢/塑壳磷酸铁锂液态电芯小,目前国产磷酸铁锂电芯中,本公司的产品3.2v10Ah内阻甚至能做到10mΩ以下,极大地减低了电池的自耗电,延长电池储存时间及使用数。

6. 形状可订制 磷酸铁锂和锰酸锂软包装电池可根据客户的需求增加或减少电芯厚度,研发新的电芯型号,价格便宜,研模周期短,有的甚至可以根据电动车形状,量身订做,以充分利用电池外壳空间,提升电池容量。

7. 放电特性佳 磷酸铁锂和锰酸锂软包装电池采用胶体电解质,相比液态电解质,胶体电解质具有平稳的放电特性和更高的放电平台。

8. 保护设计简单 由于采用磷酸铁锂材料,电芯不起火、不爆炸、无毒害、无污染、储存容量高、大倍率放电、循环寿命长(1c充放电1500次以上)、耐高温低温(-20℃--65℃)等特点,电芯本身具有足够的安全性,因此磷酸铁锂电池采用均衡充电器来控制电池的容量及电压,其保护线路设计可考虑省略或简单的放电短路、过流、过放、温控保护,而节约电池成本、延长电池寿命

无论是在数码还是在动力应用市场,软包电池都在成为非常重要的一个技术路线。

软包电芯,其实就是使用了铝塑包装膜作为包装材料的电芯。相对来说,锂离子电池的包装分为两大类,一类是软包电芯,一类是金属外壳电芯。金属外壳电芯又包括了钢壳与铝壳等等,近年来由于特殊需要有的电芯采用塑料外壳的,也可以划为此类。

二者的差别除了外壳材料不同,决定了其封装方式也不同。软包电芯采用的是热封装,而金属外壳电芯一般采用焊接(激光焊)。软包电芯可以采用热封装的原因是其使用了铝塑包装膜这种材料。

 

铝塑包装膜

铝塑包装膜(简称铝塑膜)的构成见图,其截面上来看有三层构成:尼龙层、Al层与PP层。

三层各有各的作用,首先尼龙层是保证了铝塑膜的外形,保证在制造成锂离子电池之前,膜不会发生变形。

Al层就是一层金属Al构成,其作用是防止水的渗入。锂离子电池很怕水,一般要求极片含水量都在PPM级,所以包装膜一定能够挡住水气的渗入。尼龙不防水,无法起到保护作用。而金属Al在室温下会与空气中的氧反应生成一层致密的氧化膜,导致水气无法渗入,保护了电芯的内部。Al层在铝塑膜成型的时候还提供了冲坑的塑性,这个详见第3点。

PP是聚丙烯的缩写,这种材料的特性是在一百多摄氏度的温度下会发生熔化,并且具有黏性。所以电池的热封装主要靠的就是PP层在封头加热的作用下熔化黏合在一起,然后封头撤去,降温就固化黏结了。

铝塑膜看上去很简单,实际做起来,如何把三层材料均匀地、牢固地结合在一起也不是那么容易的事。很遗憾的是,现在质量好的铝塑膜基本上都是日本进口的,国产的不是没有,但质量还有待改进。

 

铝塑膜成型工序

软包电芯可以根据客户的需求设计成不同的尺寸,当外形尺寸设计好后,就需要开具相应的模具,使铝塑膜成型。成型工序也叫作冲坑(其实个人觉得应该是“铳坑”,但大家都这么写就随俗吧),顾名思义,就是用成型模具在加热的情况下,在铝塑膜上冲出一个能够装卷芯的坑,具体的见下图。

 

铝塑膜冲好并裁剪成型后,一般称为Pocket袋,见下图所示。一般在电芯较薄的时候选择冲单坑(下图左),在电芯较厚的时候选择冲双坑(下图右),因为一边的变形量太大会突破铝塑膜的变形极限而导致破裂。

 

有时候根据设计的需要,会在气袋的位置再冲一个小坑,以扩大气袋的体积。

 

顶侧封工序

终于讲到正题了(你是跑题有多厉害!),顶侧封工序是软包锂离子电芯的第一道封装工序。顶侧封实际包含了两个工序,顶封与侧封。首先要把卷绕好的卷芯放到冲好的坑里,然后沿虚线位置将包装膜对折,如下图所示。

下面这种图是铝塑膜装入卷芯后,需要封装的几个位置,包括顶封区、侧封区、一封区与二封区。下面分别进行介绍。

把卷芯放到坑中之后,就把整个铝塑膜可以放到夹具中,在顶侧封机里进行顶封与侧封了。顶侧封机是这样子的:

图中这种型号的顶侧封机带四个夹具,左边那个工位是顶封,右边那个工位是侧封。那两块黄色的金属是上封头,下面还有一个下封头,封装的时候两个封头带有一定的温度(一般在180℃左右),合拢时压在铝塑膜上,铝塑膜的PP层就熔化然后黏结在一起了,这样就封装OK了。

侧封没有什么太多好说的(边电压神马的扯得太远就不讲了),主要来说说顶封,顶封区域的示意图如下图所示。顶封是要封住极耳的,极耳是金属(正极铝,负极镍),怎么跟PP封装到一起呢?这就要靠极耳上的一个小部件—极耳胶来完成了。极耳胶具体的结构我不是很清楚,希望有懂行的人来补充。我只知道它也有PP的成本,也就是说在加热时能够熔化黏结。在极耳位的封装见下图中圆圈部分所示。封装时,极耳胶中的PP与铝塑膜的PP层熔化黏结,形成了有效的封装结构。

 

 

注液、预封工序

软包电芯在顶侧封之后,需要做X-ray检查其卷芯的平行度,然后就进干燥房除水气去了。在干燥房静置若干时间时候,就进入了注液与预封工序。

 

通过上面的介绍我们知道,电芯在顶侧封完成之后,就只剩下气袋那边的一个开口,这个开口就是用来注液的。在注液完成之后,需要马上进行气袋边的预封,也叫作一封。一封封装完成后,电芯从理论上来说,内部就是完全与外部环境隔绝了。一封的封装原理与顶侧封相同,这里就不赘述了。

静置、化成、夹具整形工序

在注液与一封完成后,首先需要将电芯进行静置,根据工艺的不同会分为高温静置与常温静置,静置的目的是让注入的电解液充分浸润极片。然后电芯就可以拿去做化成了。

 

上图是软包电芯的化成柜,其实就是一个充放电的装置,我找了好久没有找到带电芯的图片,大家想想一下电芯夹在上面的画面就OK了。化成就是对电芯的首次充电,但不会充到使用的最高电压,充电的电流也非常小。

化成的目的是让电极表面形成稳定的SEI膜,也就是相当于一个把电芯“激活”的过程。在这个过程中,会产生一定量的气体,这也就是为什么铝塑膜要预留一个气袋。有些工厂的工艺会使用夹具化成,即把电芯夹在夹具里(有时候图简便就用玻璃板,然后上钢夹子)再上柜化成,这样产生的气体会被充分地挤到旁边的气袋中去,同时化成后的电极界面也更佳。

在化成后有些电芯,尤其是厚电芯,由于内部应力较大,可能会产生一定的变形。所以某些工厂会在化成后设置一个夹具整形的工序,也叫作夹具baking(烘烤)。

二封工序

刚才说了化成过程中会产生气体,所以我们要将气体抽出然后再进行第二次封装。在这里有些公司成为两个工序:Degassing(排气)与二封,还有后面一个剪气袋的工序,这里我就一起笼统的都称为二封了。

 

二封时,首先由铡刀将气袋刺破,同时抽真空,这样气袋中的气体与一小部分电解液就会被抽出。然后马上二封封头在二封区进行封装,保证电芯的气密性。最后把封装完的电芯剪去气袋,一个软包电芯就基本成型了。二封是锂离子电池的最后一个封装工序,其原理还是跟前面的热封装一样,不再赘述。

后续工序

因为题主问的是封装,后面的跟封装关系不大,所以二封之后的工序我就一起说了。

二封剪完气袋之后需要进行裁边与折边,就是将一封边与二封边裁到合适的宽度,然后折叠起来,保证电芯的宽度不超标。折边后的电芯就可以上分容柜进行分容了,其实就是容量测试,看电芯的容量有没有达到规定的最小值。从原则上来说,所有的电芯出厂之前都需要做分容测试,保证容量不合格的电芯不会送到客户手中。但在电芯生产量大的时候,某些公司会做部分分容,以统计概率来判断该批次电芯容量的合格率。

分容后,容量合格的电芯就会进入后工序,包括检查外观、贴黄胶、边电压检测、极耳转接焊等等,可以根据客户的需求来增减若干工序。最后就是OQC检查,然后包装出货了。

注意,到这里都还只是电芯。电芯会送到Pack厂进行进一步的加工,包括焊接电路板,包装等等。Pack厂的下游是各个使用厂家,比如苹果、联想、华为这种的,他们会把电池Pack拿去装到终端里,然后才来到我们消费者手中。

 钛酸锂电池由正、负极板(正极活性物质为三元锂,负极为钛酸锂)、隔膜、电解质、极耳、不锈钢(铝合金)外壳等组成。正负极板是电化学反应的区域,隔膜、电解质提供Li+的传输通道,极耳起到引导电流的作用。

  电池充电时,Li+从三元锂材料中迁移到晶体表面,从正极板材料中脱出,在电场力的作用下,进入电解液,穿过隔膜,再经电解液迁移到负极钛酸锂晶体的表面,然后嵌入负极钛酸锂尖晶石结构材料中。与此同时,电子流通过正极的铝箔,经极耳、电池极柱、负载、负极极柱、负极耳流向负极的铝箔电极,再经导电体流到钛酸锂负极,使电荷达至平衡。

  电池放电时,Li+从钛酸锂尖晶石结构材料中脱嵌,进入电解液,穿过隔膜,再经电解质迁移到三元锂晶体的表面,然后重新嵌入到三元锂材料中。与此同时,电子经导电体流向负极的铝箔电极,经极耳、电池负极柱、负载、正极极柱、正极极耳流向电池正极的铝箔电极,然后再经导电体流到三元锂正极,使电荷达至平衡。

  由此可见,钛酸锂电池基本原理,就是在充、放电的过程中,对应的锂离子在正负极之间来回的嵌脱,完成电池的充放电和向负载的供电。钛酸锂电池的充放电示意图如图所示。

 

  电池充电时,正极失去电子,锂离子脱出,嵌入到负极中;负极嵌入锂离子的同时得到电子成为富锂态。放电时的过程正好相反。在Li+嵌入或脱嵌的反应过程中,钛酸锂(Li4TI5O12)是一种理想的嵌入型电极材料,Li+插入和脱嵌对材料结构几乎没有影响,因此被称作“零应变”材料,从而保证了其良好的循环性能。

  钛酸锂存在两种不同相的分子结构——Li7TI5O12与Li4TI5O12。产生Li7TI5O12的晶体结构与Li4Ti5O12的晶体结构均为尖晶石结构,且晶格常数变化很小,同时体积变化也很小。能够避免充放电循环中电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数的增加而带来容量的衰减,使钛酸锂具有优良的循环性能。

  钛酸锂电池的电化学反应方程式:

  

  总化学反应方程式:

 

  钛酸锂电池的结构组成

  正极:磷酸铁锂、锰酸锂或三元材料、镍锰酸锂。

  负极:钛酸锂材料。

  隔膜:以碳作负极的锂电池隔膜。

  电解液:以碳作负极的锂电池电解液。

  电池壳:以碳作负极的锂电池壳

 

  钛酸锂电池优点

  钛酸锂电池具有体积小、重量轻、能量密度高、密封性能好、无泄露、无记忆效应、自放电率低、充放电迅速、循环寿命超长、工作环境温度范围宽、安全稳定绿色环保等特点,所以在通信电源领域具有非常广泛的应用前景。

  钛酸锂作为负极材料时电位平台高达1.55V,比传统石墨负极材料高出1V还多,虽然损失了一些能量密度,但也意味着电池更加安全。技术专家卢蓝光曾表示,电池快速充电时对负极电压需求比较低,但如果过低,锂电池就容易析出非常活泼的金属锂,这种锂离子不仅导电,还能跟电解液起反应,然后释放热量,产生可燃气体,引发火灾。而钛酸锂因为高出来的1V电压避免了负极电压为0的情况,也就间接避免了锂离子的析出,从而保证了电池的安全性。

  由于钛酸锂电池在高温、低温环境中均可以达到安全使用,也体现出其耐宽温(尤其耐低温)的重要优势。目前,银隆钛酸锂电池的安全工作温度区域在-50度到65度之间,而普通石墨类负极电池在温度低于-20度时能量就开始衰减,-30度时充电容量仅为充电总容量的14%,在严寒天气下根本无法正常工作。此外,由于钛酸锂电池即便过度充电,也仅有1%的体积变化,被称为零应变材料,这使其有着极长的寿命。银隆董事长魏银仓曾表示,银隆钛酸锂电池寿命可达30年,与汽车使用寿命相当,而普通石墨负极材料电池平均寿命不过3-4年。从全寿命周期看,钛酸锂电池成本更低。

  钛酸锂的最后一个优势是快速充放电能力强,充电倍率高。目前银隆钛酸锂电池的充电倍率有10C、甚至20C,而普通石墨负极材料的电池充电倍率仅有2C-4C。基于钛酸锂电池的这些技术特点,业内人士认为其契合了新能源公交车、大型储能装备的需求。

 

 

  钛酸锂电池缺点

  然极佳的安全性能使得对钛酸锂离子电池的研究成为热点,但是Li4Ti5O12材料本身的较低的电子电导率(10-13S/cm)和锂离子扩散系数(10-10~10-13cm2/S)极大地限制了在大倍率充放下的应用。有学者研究表明,将Li4Ti5O12的颗粒尺寸纳米化以后可以扩大有效的反应面积和减小扩散距离,从而显著的提升材料的倍率性能。但是需要指出的是,材料颗粒纳米化的过程往往比较困难,需要较高的成本,目前难以实现大规模的工业生产。

  钛酸锂电池在循环使用中会发生持续产气,导致电池包鼓胀,高温时尤其严重,影响正负极的接触,增加电池阻抗,影响电池性能的发挥。这也是限制负极材料钛酸锂广泛应用到电池中的主要障碍之一。

 

  钛酸锂电池技术开发难点及其发展方向

  1.在中国发展钛酸锂电池技术的理由

  钛酸锂电池技术在我国各种储能电池中的竞争应该占有天时、地利、人和之优势。光就使用寿命而言,钛酸锂电池超长的循环寿命远胜于各类铅酸电池;其效率、成本及电化学性能更是优于钠硫与液流钒等电池体系。

  锂电产品历年来主要市场是便携式电器如手机和手提电脑等。中国的手机与手提电脑的用量虽大,但大部分都不属国内品牌。所以国内锂电厂家在便携式电器上的锂电销售能力输于日韩产品。

  然而,钛酸锂技术的适用市场却是混合电动车、特殊工业应用及储能应用如调频及电网电压支撑等。这些市场在全世界尚处于起步阶段,谁执牛耳尚未可知。钛酸锂技术有望成为这些市场中的佼佼者。

  中国人口基数占全世界约1/5。由于人口众多,中国的电动车、储能及工业应用市场是一个让许多国家的跨国公司所垂涎的巨大市场。近年来中国政府对电动车及储能产业的发展高度重视,各类国家鼓励政策纷纷出台。中国产的钛酸锂电池系统在重庆及欧洲的混合电动大巴、张北的风光储示范站及深圳宝清储能电站已有了几年的商业化应用数据积累。

  另外,我国锂电产业链的上下游早已成气候,除了完备的电池材料供应与设备制造能力之外,锂电池产品的生产能力也与日、韩三分天下。这就使得我国的锂电生产厂家从传统锂电生产转型到钛酸锂电池产品生产具备了先天的条件。

  我国在钛酸锂材料生产方面早已有了像四川兴能、珠海银隆、湖州微宏等既有实力又有经验的企业。在钛酸锂电池生产方面脱颖而出的代表企业有湖州微宏、珠海银隆、深圳博磊达、天津捷威等。

  这些企业都已经在国内外电动车及储能市场初步建立了自己的销售渠道。尤其值得指出的是深圳博磊达拥有从材料生产到电池制作及系统集成一系列专有技术与知识产权,目前中国锂电界尚属少见的拥有自主知识产权的生产厂家。

  2.钛酸锂材料、电池及电池组制作的瓶颈

  既然钛酸锂电池技术有诸多其他锂电无法比拟的优越性,那为何至今为止在中国能源行业乃至世界能源领域应用寥寥呢?原因有以下3个方面:

  ①钛酸锂材料生产钛酸锂材料的生产从原则上说并不复杂。但要用作锂离子电池的负极材料,不但需要讲究材料具有合适的比表面积、粒度、密度和电化学性能等,还必须能够适应于大规模锂电池的生产工艺。钛酸锂材料在很多传统锂电生产线上无法正常生产的原因之一就是材料的pH为11或12,吸湿性极强。

  ②钛酸锂电池制作在事实上,将常规锂离子电池生产线直接用来生产钛酸锂电池产品并不像仅仅把石墨换成钛酸锂材料那样简单。因为钛酸锂材料对湿度的要求比常规锂离子电池生产要高得多。为了控制湿度,有些制备工艺需要做相应的调整以适应钛酸锂电池产品生产的特殊要求。另外,有些生产设备也需要做相应的改进。如果有条件的话,最好能专门为钛酸锂电池产品重新设计一条结构紧凑、体积小巧、全封闭式的自动化生产线。

  ③钛酸锂电池组与常规锂离子电池不同,目前国内外生产的钛酸锂电池在成组投入应用一段时期后常会看到软包的单体电池内有微量的气体产生。这些气体与新鲜电池化成时产生的气体不同。前者能够通过电池生产工艺来去除。但后者则是在电池使用过程中产生的,或者说在目前的工艺条件下很难避免。

  笔者认为,研究循环时气体产生的化学反应机理应该不失为一个很好的科研题目。另外,由于钛酸锂电池技术的优越性之一是其高功率性能。虽然电池本身可以承受大电流充放电,但厚的单体电池仍然不适于高功率应用因为电池太厚会造成大电流产生的热量难以散发。所以对大功率钛酸锂电池来说,尺寸大而薄的软包电池结构仍不失为一个合理的选择。

  3.钛酸锂技术的今后发展方向

  最后,在此有必要综合概括一下钛酸锂材料作为锂电负极的优劣势,优势:超高安全性、超长寿命、高低温工作范围宽、高功率、低成本以及绿色环保。劣势:钛酸锂材料能量密度低、吸水性强,电池制作的环境要求高、生产工艺要做相应的更新、新工艺需要投资必要的设备与更高要求的湿度控制、以及钛酸锂电池的应用市场尚未充分打开。