锂电池使用寿命会受哪些因素影响你知道吗?
1、放电深度
放电深度即使用过程中放电到何程度开始停止.100%深度指放出全部容量。铅酸蓄电池寿命受放电深度影响很大。设计考虑的重点就是深循环使用、浅循环使用还是浮充使用。若把浅循环使用的电池用于深循环使用时,则铅酸蓄电池会很快失效。
因为正极活性物质二氧化铅本身的互相结合不牢,放电时生成硫酸铅,充电时又恢复为二氧化铅,硫酸铅的摩尔体积比氧化铅大,则放电时活性物质体积膨胀。若一摩尔氧化铅转化为一摩尔硫酸铅,体积增加95%.这样反复收缩和膨胀,就使二氧化铅粒子之间的相互结合逐渐松弛,易于脱落。若一摩尔二氧化铅的活性物质只有20%放电,则收缩、膨胀的程度就大大降低,结合力破坏变缓慢,因此,放电深度越深,其循环寿命越短。
2、过充电程度
过充电时有大量气体析出,这时正极板活性物质遭受气体的冲击,这种冲击会促进活性物质脱落;此外,正极板栅合金也遭受严重的阳极氧化而腐蚀,所以电池过充电时会使应用期限缩短。
3、温度的影响
铅酸蓄电池寿命随温度升高而延长。在10℃~35℃间,每升高1℃,大约增加5~6个循环,在35℃~45℃之间,每升高1℃可延长寿命25个循环以上;高于50℃则因负极硫化容量损失而降低了寿命。
电池寿命在一定温度范围内随温度升高而增加,是因为容量随温度升高而增加。如果放电容量不变,则在温度升高时其放电深度降低,固寿命延长。
铅酸电池的使用寿命到底是年限还是使用次数_铅炭电池与铅酸电池和铅碳电池有什么区别
4、硫酸浓度的影响
酸密度的增加,虽对正极板容量有利,但电池的自放电增加,板栅的腐蚀也加速,也促使二氧化铅的松散脱落,随着蓄电池中使用酸密度的增加,循环寿命下降。
5、放电电流密度的影响
随着放电电流密度增加,电池的寿命降低,因为在大电流密度和高酸浓度条件下,促使正极二氧化铅松散脱落。
同口保护板接线应用示例
1
电池保护板接好后,后面我们要接好充放电线
锂电池保护板接线教程
2
充电线中的红色那根线接到电池总正极上面放电线(带负载)中的红色那根线接到电池总正极上面
锂电池保护板接线教程
3
充电线中的黑色那根线接到锂电池保护板上的P-线上放电线(带负载)中的黑色那根线接锂电池保护板上的P-线上
锂电池保护板接线教程
END
分口保护板接线应用示例
1
充电线中的红色那根线接到电池总正极上面放电线(带负载)中的红色那根线接到电池总正极上面
锂电池保护板接线教程
2
充电线中的黑色那根线接到锂电池保护板上的C-线上放电线(带负载)中的黑色那根线接锂电池保护板上的P-线上
锂电池保护板接线教程
注意事项
接排线一定要正确,接错线会烧坏保护板,所以通过电压再三确认每串电池电压以保证线排没有接错。
如果是旧电池,电池每串的电压相差大于0.1V,差异大的电池串很有可能有虚电,容量和电阻发生了变化,会形成木桶短板效应,造成充电过快过充保护,放电过快过充保护,简单理解是电池使用时间短,电动车等应用场景使用时间短。
保护板是保护每一串电池的,其中任一串过充或者过放都会造成保护的。
传统内燃机汽车中危害最大的部分是蕴含巨大能量的燃料,像汽油这样燃点低易爆炸的液态燃料一旦泄露就非常容易造成极大的安全隐患。而新能源汽车的动力电池,经过完善的电池管理系统(BMS)监控,每一颗电池都能得到最准确的控制,预防事故的产生。
以比克18650电池产品为例。在单体电芯工艺上,比克选择在正负极分别配置保护添加剂和反应性添加剂,阻止电解液分解导致的安全问题。同时添加陶瓷隔膜和负极陶瓷涂层等安全防护手段,从根源控制事故的产生。此外,比克小型圆柱18650电池成组模式,每颗电池之间都保持足够的安全距离,确保单颗电池的事故不会对其他电池造成影响。
三元锂电池正在主导未来的动力电池市场
在电动汽车领域,美国的特斯拉一直是国内诸多车企的标杆。而谈到传统车企研发新能源汽车的实力,宝马i3的推出也成为了教科书般的典范。有趣的是,这两款车都选择了三元锂电池作为动力电池。反观国内市场,像江淮、比亚迪、北汽等不少汽车厂商也开始将旗下原本使用磷酸铁锂电池的车型换装三元锂电池。
还是那句话:技术不分好坏,只有适合或者不适合。国内外车企对于电池类型选择的“不谋而合”也绝对不是巧合。相信在不久的将来,电动汽车的电池市场将会重新洗牌,三元锂电池凭借其耐低温、高能量密度、高充电效率不错的循环寿命以及更强的安全性等特性,也会在新的市场中站稳脚跟。