什么是一次电池、充电电池?一次电池和充电电池有什么区别?
来源:宝鄂实业
2019-04-17 20:50
点击量:次
电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池电压各有不同。
2、一次电池和充电电池有什么区别?
电池内部的电化学设计决定了该类型的电池是否可充。根据它们的电化学成分和电极的结构可知,可充电电池的内部结构之间所发生的反应是可逆的。理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极的体积和结构上引起可逆的变化,那么可充电电池的内部设计就支持这种变化。而一次电池在给定的电池环境中两个电极之间的电化学反应是不可逆的,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济。如果需要反复使用,应选择真正的循环次数在1000次左右的充电电池,这种电池又称为二次电池。
另一明显的区别就是二次电池具有较高的比能量和负载能力,但自放电率较大。一次电池能量密度远比二次电池高。然而他们的负载能力相对要小。气相沉积法包括化学气相沉积法(CVD)和物理气相沉积法(PVD).CVD是一种用于生产高质量、高性能的固体材料的化学过程,这个方法通常应用于半导体领域的薄膜制造.PVD是一种真空沉积法,可以用来制作薄膜和涂层.PVD是材料从凝聚态转变为气态,然后再转变为凝聚态薄膜的一个过程.最常见的PVD过程是溅射和蒸发.PVD常用于制造具有机械、光学、化学或电学性能的薄膜 [14].
1.2高温固相合成
高温固相合成是一种在高温(1 000~1 500 ℃ )下,通过固体界面之间的接触、反应、成核和晶体生长反应生成大量的复合氧化物的方法.高温固相合成应是制备硅碳复合材料一种常用方法,为了防止惰性相硅碳的生成,反应温度通常控制在1200 ℃ [15].在反应过程中,温升速率、反应前驱物的选择和反应温度的高低将直接影响材料的结构和性能.高温固相合成技术因工艺简单,工艺参数易于控制,重现性好而被广泛应用.
1.3机械合金化
与高温固相合成法相反,机械合金化法制备的材料通常具有更小的粒度,更大的比表面积和更均匀的组织[16].机械合金化是一种固态粉末加工技术,涉及重复冷焊、压裂和在高能球磨机中重新焊接混合粉末粒子,从而获得均匀材料的方法,已被证明能够从混合元素或预合金粉末中合成各种平衡和非平衡合金相[17].
1.4静电纺丝
静电纺丝是一种利用静电来喷射聚合物溶液或聚合物的带电细丝的纤维生产方法,其直径一般为几百纳米.静电纺丝技术融合了电喷涂和传统的溶液干法纺丝纤维的优点[18].该过程不需要使用化学凝固或高温来从溶液中产生纺丝,这使得该工艺特别适用于大而复杂的微粒生产纤维 [19-20].静电纺丝技术是可利用各种材料制备纳米纤维的一种低成本、工艺简单的通用方法,改进工艺后的同轴静电纺丝技术可制备纳米管和核壳结构纳米纤维[21].
2 硅碳负极材料
碳纳米材料因其独特的性能而有着许多技术应用,包括轻量化构造、电子、能源、环保、医药等领域[22-23].纳米材料的物理和化学性能不同于普通材料甚至更优于普通材料,这些优异的性能通常由材料组织的微结构决定[24-25].碳材料因其良好的机械特性,高导电性和化学稳定性,在无黏结剂电极和轻质电极研究领域备受关注.近年来,纳米线、纳米纤维、纳米管、纳米球等硅碳纳米结构经常被应用于锂离子电池中.
2.1硅碳纳米线
纳米线是纳米级应用的一种,产业化的纳米线直径分布在50~100 nm[26].图1为碳硅核壳纳米线的SEM形貌. 将非晶硅包覆在碳纳米线上制备的碳硅核壳纳米线材料[27]作为高功率和长寿命锂电池负极的容量可达2 000 mA·h g-1且具有良好的循环寿命.