高安全的磷酸铁锂电池,热失控是怎样的你知道吗?
随着新能源汽车的大规模普及,动力电池的安全问题也引起了我们越来越多的关注,相比于能量密度更高的三元锂离子电池,磷酸铁锂电池被认为具有更高的安全性,那么更安全的磷酸铁锂电池发生热失控是一种怎样的体验呢?
近日,英国的谢菲尔德大学的PeterJ. Bugryniec(第一作者)和Solomon F. Brown(通讯作者)等人利用加速量热(ARC)和热箱实验对于LFP电池在不同的SoC状态下导致热失控发生的主要原因进行了分析,研究表明在高SoC下,正极和负极分解反应是引起LFP电池热失控的主要原因,但是在较低的SoC状态下负极的分解反应是导致LFP电池热失控的主要原因。
LFP材料具有橄榄石结构,我们认为由于更加稳固的P-O键的存在,使得LFP材料在高温下具有很高的稳定性,我们以18650结构电池为例,如果采用LFP材料则在热失控中最多能够释放0.5g的O2,但是如果我们以LCO为正极材料那么热失控中能够释放出多达3.25g的O2,更少的O2释放意味着电解液的燃烧反应受到抑制,释放更少的热量,从而抑制LFP电池热失控的剧烈程度。
实验中采用的电池为商业LFP 18650电池,容量为1500mAh,并分别采用ARC和热箱实验研究LFP电池的热失控行为(如下图所示),分别控制LFP电池的SoC为0%、28%、63%、100%和110%进行ARC(加速量热)测试,控制SoC为100%进行热箱测试。
ARC测试是研究锂离子电池热稳定性的常用方法,基本操作方法可以分为三步,首先是加热到预定温度,第二步是等待,第三步是搜寻,也就是电池在某个温度下电池温度的升温速率达到某个速率就意味着电池开始自放热,如果电池的升温速率达到某个速率则以为电池开始热失控。
在这里作者将ARC的开始温度设定为50℃,结束温度设定为315℃,每步升温5℃,等待60min,如果电池在该温度下升温速率达到0.02℃/min,则该温度是电池的自发热开始温度,如果电池的升温速率达到1℃/min,则该温度为电池的热失控触发温度。
下图a为100%SoC电池的ARC测试曲线,从图中能够看到100%SoC的LFP电池的自发热开始温度为95℃,随后电池的升温速率一直增大,并在230℃达到3.7℃/min,但是随后电池的升温速率开始出现下降,并在280℃附近出现了一个新的高点——1.6℃/min。
其中区域1,95-150℃,电池开始自加热,这主要对应的为负极表面的SEI膜发生分解,并伴随着负极-电解液反应,在区域3中,150-255℃,该阶段产生的热量主要来自于负极-电解液、正极-电解液的副反应,其中负极-电解液释放的热量占据绝大部份。在区域4中(>255℃),这一阶段的电池内部热量的产生主要来自于电解液与LFP分解产生的O2发生的氧化反应。
在110%SoC和63%SoC下电池的ARC曲线与100%SoC电池的ARC的曲线的形状基本是相同的,但是当电池的SoC进一步下降到28%,则电池的ARC曲线形状则会出现明显的变化(如下图d所示),从电池自放热开始后一直到190℃,电池的升温速率一直在提升,并在190℃左右达到峰值,然后开始下降,随后电池的升温速率又开始缓慢增加。