定制热线: 400-678-3556

行业资讯

动力电池材料研究进展新的突破有哪些?

来源:宝鄂实业    2019-05-03 19:51    点击量:
但是对于电池材料来说,有很多的问题和性能的要求,同时采取了至少有13种以上的技术来综合地解决这方面的技术,每一根线都有很多细节的技术和内容,你更换一个材料的时候,整个电池会很复杂地变化,研发这个电池材料特别慢,一般的需要十几年以上,现在的很多团队和公司已经在开发300瓦时每公斤的锂电池了。现在在这个方面最难的一个问题就是高的负极容量带来高的体积膨胀,那你在电芯层面上非常难涉及,核心的问题就是怎么解决在充电之后的体积膨胀能够满足现在的电芯企业的要求,另外就是说这些高能量密度的实现是可以的,但是他的综合接入指标能不能满足应用要求?是什么样的上限这个不太清楚,这个里面有一些解决的方案,时间关系就不详细讨论了,欢迎大家有机会我们交流这方面的技术。
 
  另外政府上要做400wh/kg和500wh/kg,这个经过计算有一个模型,把现在石墨的负极,硅负极金属锂也放这里,如果做到800瓦以上还有机会,400wh/kg,500wh/kg还有一些解决方案,但是实现是非常难的,NC最高做到200,负锂做到300,不同的负极材料这个是系统的计算,从计算上看似乎还是说有一些正负极材料的匹配实现高的密度,前面都是虚的计算,科学院在这方面的工作。科学院为了加强研发成果能够促进经济的发展,解决实用问题,启动了战略先导A类项目,其中有一个纳米项目,就是把过去20多年了科学院研究的纳米技术争取集中支持一下,希望对产业有一个帮助,在这些项目里面其中第一个就是动力电池,纳米材料和纳米技术很可能会用上。
 
  对这类项目的要求,原来负责这个项目的阴和俊副部长提出,我们做的事情目标清楚、要能用上、可考核,经过第三方考核的,材料用的上,技术用的上,最后用上水平怎么样,有没有影响,影响能力多大有很多的指标考核,所以这样的项目就非常难了。他提出了具体的指标,国家已经提出来了2020年要做到300瓦时每公斤,到2015年要实现150瓦时每公斤,相关的电池材料正极电解质隔膜等等也需要开始产业化。为了完成这个项目设了几个主要的内容,一个是60%的经费到70%的经费用到了锂电池方面,开发高能量的正极、负极,高电压的电解液,高安全的隔膜,集成在动力电池上面,从长远考虑我们需要布局固态电池,空气电池在这方面也安排了。另外就是今天早上的陈老师提到了检测水平,国内的检测水平还是有的,但是建了两个平台,我简单汇报一下结果。有12家单位,大概有300人的研发队伍,涉及各个方面。一个是硅负极,之后一直在做这方面的科学技术的研发已经19年,相当难的事情。最近是在从应用的角度一直在开发这个事情,主要的技术路线包括两类,一个是SiOx/C,一个是Nano-Si,主要是从综合的技术指标不断的迭代,2013年得到支持以后,可以做到批次500公斤的水平,大概是综合的设计考虑,我在这里展示的是我们思想不是真实的事情。导入添加剂等等还是非常难的,纳米归谈里面的难点是怎么样得到100块钱每公斤的纳米硅.
 
    第二个如何把纳米硅在颗粒当中均匀的分散?
 
  现在做到的是这样的材料,大概是把纳米硅分散在颗粒当中,能够进入到批量的生产,在450毫安每时材料当中,一般循环500次左右是高容量的负载,但是前面开发的氧化亚硅都在开发,但是效率低,纳米硅碳的容量高都不是满意的解决方案,所以我们正在开发新一代的富硅氧化物材料,减少带来的挑战。
 
  这个新材料公司目前在国内还在第三或者是第二位的,这里面就解决了一系列的技术问题,我就不详细说了,负极材料有进展,正极材料我们积累的比较少。在这个项目支持之后,主要针对高容量的等级,这个材料难的地方就是电压衰减,这个工作当中主要是通过表面结构重新的重构,解决了电压衰减的问题,因此就可以开始试用,今年是在500公斤的量级。
 
  另外一个材料就是高电压的尖晶石,比较容易切换过来,最难的是用了这个材料以后电解液等等需要全面的升级,所以这个方面还是需要提升,特别是高温55度的问题。为了解决高电压富锂材料,这个在国内上是非常重要的也是也很有挑战,现在可以在高电压当中相对来说稳定的循环,在电解液方面还有添加剂。隔膜我们感觉直接用还是有点问题,所以说开发陶瓷隔膜,同时用纤维素的基材,耐高温,但是这个好象还不能最终用在我们的电池上,主要就是一致稳定性,现在是小试到中试的阶段,但是展示的前景是有一些希望,纤维素隔膜加上陶瓷颗粒,其实我们还开发了离子导电涂层隔膜。
 
  石墨烯都开发了很长时间了,以及涂层的技术,都能做到几十吨量产的水平,用刚刚的材料做了初步的电池,这个电池可以做到375瓦时每公斤,但是循环性不行,容量低循环好,主要是在高体积膨胀下怎么解决一系列辅助材料的问题。
 
  最后我介绍一下固态金属锂,理论计算上考虑,锂电池的提升,还有一个可能还用锂电池的电池,金属锂电池,还有空气电池,包括了氧、水、二氧化碳等不同的电池的体系,在刚刚的计算结果当中可以看到绿色的金属锂比较高,硅负极比较厉害,如果2000毫安的硅,膨胀在200以上这个相对来说,锂的膨胀更容易解决一些,如果冲击更高能量的电,还能用后电池的想法,但是这个力学等等还有一些挑战。
 
  金属锂电池已经研发了50多年,特别是80-90年代有很严重的问题,目前没有证据表明金属锂电池是安全的。用金属锂电池改变的问题,主要是非均匀的沉积和析出跟石墨和硅不一样,第二个是SEI膜不稳定,所以很多人还是希望用固态解决这个问题。固态的一个关键点就是说可能在理论上解决,所以有很多的安全性和好处,以及循环系数的好处,另外还可以做内串,比如说聚合物类的,以及添加一些液体的电解液,在国际上有很多的公司投入很多,但是从实际的角度考虑,能量密度高的电池目前没有做出来,这里面关键的问题是正极这一块的电阻怎么解决的问题。
 
  从产业发展角度,固态电池区别的就是固态电解质,可能会用到金属锂电池,锂电池也是很强大,这个实际上就是在产业的发展当中,一旦电芯技术关键材料可以突破,就可以迅速进入到市场当中去,所以我们提出了一些路线图,也许最快在2019年拿出电池包来,2020年有可能试水到商业化的程度,有一些全固态的还比较慢,真正的全固态可能要更长的时间,稍微含有一点液体的电池会比较快,因为兼顾了能量密度和安全性。