详解锂离子电池常用的粘结剂的种类、作用及性能
来源:宝鄂实业
2019-05-21 20:43
点击量:次
当今世界上,人类正面临化石能源的日益枯竭和对可持续能源的不断增长的需求的严峻问题,从而推动了对低成本、环保和高性能能量转换和存储系统的研究。同时,随着电动汽车和智能电网应用需求的快速增加,因此可以提供高能量密度、稳定的可循环性和优异成本效益的电池的市场需求越来越大。其中,锂离子电池因具有高能量密度、优异的循环稳定性和重量轻的优点,而成为最有前景的能量存储设备之一。然而,目前最先进的锂离子电池仍然不能满足日益增长的高能量密度需求,因为用锂金属作为阳极时主要存在树枝状晶形生长,将可能出现短路(导致热失控)和低库仑效率、循环寿命差的问题。
在开发锂金属负极以及其他高容量正极化学品(如硫和氧)时,研究人员发现利用固体电解质(SSE)取代传统电解液时具有很好的安全性,因此开发基于固体电解质的锂金属电池或许可以从根本上解决安全性的问题。同时,研究结果表明在室温下的离子电导率就高于10-3 S cm-1的超离子导体。然而,SSE与电极的相容性差产生的高界面阻抗的问题,限制了它们的实际应用。目前,科研人员已经提出了采用先进的分离器、电解质添加剂和正温度系数(PTC)改进的集电器等新方法以提高锂金属电池的安全性。因此,现在迫切需要开发出具有更高能量密度、更长循环寿命和更高安全性的锂金属电池的新化学品或技术。
最近,Chem在线刊登了美国斯坦福大学的崔屹教授和中国上海科技大学的刘巍研究员(共同通讯作者)、上海科技大学博后夏水鑫(第一作者)和上海科技大学15级本科生吴昕晟(共同一作)等人总结的关于全固态锂金属电池的发展现状和未来前景的综述。题目是“Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries”。在这篇综述中,首先总结了高导电固体电解质(SSE)的主要挑战和最新发展,包括聚合物、无机和复合材料,以及用于下一代高能量密度的锂电池,从基础理解到技术创新。其次,总结了关于SSE和电极界面问题的策略。接着,介绍了锂金属负极与锂嵌入化合物、硫和氧正极结合的ASSLMBs的当前进展和实际挑战。最后,还展望了基于锂金属负极的ASSLMBs的未来前景。
2、锂电池的固态电解质
2.1、固态电解质(SSE)在实际应用中存在以下的问题:
(1)SSE的低离子电导率,特别是在低温下;
(2)电极—电解质的固固界面处的界面电阻大;
(3)与电极的电化学兼容性差,如锂金属负极和高电压正极材料;
(4)电极的物理稳定性下降导致大的界面应力变化。
2.2、对固态电解质的基本理解
SSE中的锂离子传输主要分为两类:聚合物和无机材料中的离子传输。SSE中离子电导率的温度依赖性通常由Arrhenius(对于晶体材料)或Vogel Tammann-Fulcher (VTF)方程(对于无定形材料)来模拟。
(A)SPE的非晶相中的Li离子传导;
(B)SPE结晶相中的Li离子传导。
2.3、电解质—电极界面的锂离子传输
电解质和电极之间的高界面电阻对电池的整体性能具有显著的影响,阻碍了ASSLBs发展。ASSLBs的电化学反应不同于使用具有固—液界面的液体电解质的锂电池,其通过固、固电解质—电极界面进行。锂离子是通过它们的互连区域从电解质扩散到电极,并在接触电解质-电极界面处发生与活性材料和电子的氧化还原反应。
(A)正极—电解质界面处形成的Li缺陷层;
(B)Li减少的分解层面对Li-金属负极;
(C)各种SSE材料的电化学稳定性区域。
2.4、电解质—电极界面的观察
通过纳米工程和材料设计技术了解和改善电解质—电极界面的行为对于构建具有改善的电化学性能的安全锂电池是绝对有必要的。 同时,在原子尺度上实时观察电池中发生的界面演变,将更有助于研究人员对电池发生的变化的了解和掌握。
图六、各种先进技术观察电解质—电极界面的微观结构和形貌全固态锂金属电池的实际挑战和未来前景
(A)原位STEM的设置;
(B)通过TEM操作的EH,在充电状态(顶部)下的电极—电解质界面处的锂离子和电子的分布以及测量的电位分布(底部);
(C)用于X射线显微镜的操作液体成像平台;
(D)通过冷冻TEM表征的程序。
3、固态电解质
3.1、固体聚合物电解质
干燥聚合物的SPEs可以溶解的锂盐,且具有柔韧性好、重量轻、良好的可加工性和低的成本的优势,明显优于无机固体电解质。
图七、单离子聚合物电解质及其相应的电导率性能全固态锂金属电池的实际挑战和未来前景
(A) 单离子导电聚合物电解质的化学结构;
(B) 具有不同比例的P(STFSILi)的聚合物电解质的导电性能;
(C) 单锂离子导体LiPSsTFSI聚合物的合成路线;
(D) 不同电解质的导电性能。
3.2、无机固体电解质
无机固体锂离子导体主要包括石榴石型、钙钛矿型、钠超离子导体(NASICON)型和锂超离子导体(LISICON)型材料以及硫化物玻璃等。它们大致可以分为两类:氧化物和硫化物。
3.2.1、氧化物
石榴石型材料的通式为A3B2(XO4)3(A = Ca, Mg, Y, La或稀土;B = Al, Fe, Ga, Ge, Mn, Ni, V;X = Si, Ge, Al),其中A和B阳离子分别具有8和6配位。钙钛矿结构的理想通式为ABO3(A = Li, La;B = Ti),其中A位点为12配位,B位点为6倍配位。NASICON型结构的结晶磷酸盐如Li1+xAlxTi2-x(PO4)3(LATP)和Li1+xAlxGe2-x(PO4)3(LAGP)具有高离子电导率,优良的锂离子导体在室温下的导电率~7×10-4 S cm-1,在潮湿的环境中具有良好的稳定性。
(A) 立方Li7La3Zr2O12的晶体结构;
(B) 立方Li7La3Zr2O12中Li原子排列的三维导电网络;
(C)Li3xLa(2/3)-×1/3-2xTiO3的晶体结构;
(D)Li10GeP2S12的晶体结构。
3.2.2、硫化物
最早研究的硫化物型固体电解质是Li2S-SiS2体系。常用的硫化物玻璃电解质包括Li2S-P2S5, Li2S-GeS2, Li2S-B2S3和Li2S-SiS2,电导率为~10-4 S cm-1。在室温下,通过用氧元素取代得到的硫-LISICON型Li3+x (P1- xSix) S4中的硫元素显示出改善后的离子电导率增加了2倍,使其离子电导率高达6×10-4 S cm-1。
3.3、有机—无机复合电解质
CSEs根据主要成分分为两类:聚合物基质(CPEs)和无机材料基质。具有无机填料的SPEs的CPEs,通常显示出更高的离子电导率、更好的机械性能和与电极的相容性。构建可结合有机和无机电解质优点的CPEs被认为是制造高性能的柔性电池的非常有前景的方法,同时增强机械性能有助于防止锂枝晶生长以提高安全性。