新型钠离子电解质能否用于固态电池?
来源:宝鄂实业
2019-05-29 11:31
点击量:次
电解质是电池的三个主要部分之一,负责在固态电池中转移带电离子。一旦电池的另外两个部分(阳极和阴极)连接在电路中,这就产生电流。
智能手机,计算机和其他消费电子产品中的大多数可充电电池使用液态锂基电解质。
“液体电解质存在安全问题,因为它们易燃,”宾夕法尼亚州机械工程副教授王东海说。“这一直是我们寻找用于固态电池的良好材料的驱动力。”
该团队的新材料由钠,磷,锡和硫组成,具有四方晶体形状。它有缺陷,或某些钠,锡和硫原子的空间,这些允许它转移离子。
因为钠比锂更丰富,钠离子电池的生产成本可能比锂离子电池便宜得多。该材料使用起来也更安全。
“我们的材料具有宽电压窗口和高热稳定性,”宾夕法尼亚州立大学机械和核工程博士后研究员赵兆新说。“当你将液体电解质加热到150摄氏度(302华氏度)时,它们会着火或释放出大量热量,可能会损坏其他电池或电子元件。我们的材料可以达到400摄氏度(752华氏度) “。
该团队报告纳米能源,他们的材料的室温离子电导率约为当今电池中液体电解质的十分之一。他们说,重要的发现是晶体结构中缺陷的具体配置。
宾夕法尼亚州立大学材料科学与工程研究教授尚顺利表示:“我们对这种材料新结构的发现也向我们展示了创造一系列先进钠离子超离子导体的途径。”
该团队在Wang的实验室中创建并测试了这种新电池,该实验室是宾夕法尼亚州电池和储能技术中心的一部分。通过他们的协作设计过程,该团队已经能够确定不同的晶体形成以及材料的不一致性如何影响其性能。锂离子电池主要依靠锂离子在正极和负极之间移动来工作。充电时,锂离子从正极脱嵌,经过电解质嵌入负极;放电时则相反。形象地说,锂离子电池就像一把摇椅,摇椅的两端为电池的两极,而锂离子则在摇椅两端来回“奔跑”。
随着经济的发展、环境污染的日益加剧、不可再生的能源资源不断消耗,人类社会迫切需要提高能源的利用效率,开拓新能源和可再生能源,而这些均离不开电化学储能电池。
传统的以有机溶剂为电解液的锂离子电池虽然具有能量密度高的优势,但存在安全性较低和成本较高的问题。与之相比,水系离子电池具有价格低廉、无环境污染且安全性高等优点,在电网级别的大规模储能领域具有潜在的重要前景。
由于钠资源相对丰富,钠离子水系电池被认为是下一代水系二次电池的理想选择。目前,美国的aquionenergy和alveoenergy两家公司正在积极开发基于钠离子水系电池的储能系统,而中国在这方面研究不足。
中国科学院宁波材料技术与工程研究所研制的新型水系锂钠混合离子电池,可谓钠离子电池家族中增添的一支新军。
该类电池的一极采用选择性嵌入/脱嵌锂离子的化合物为活性材料,而另一极则选用选择性嵌入/脱嵌钠离子的化合物作为活性材料,同时以锂钠混合离子水溶液作为电解质。
与传统锂离子电池“摇椅式”的工作原理不同,该类电池在充放电过程中,锂离子和钠离子分别仅在电池的一极与电解液之间移动。得益于这种独特的工作原理,该类电池不但能储存电能,而且还具有分离金属离子的功能,可谓“一举两用”。
锂钠混合离子电池的美妙之处在于其双功能性。锂和钠在元素周期表中属同族元素,它俩化学性质相似,难以分离。
现有的分离技术多采用化学方法,需要大量的na2co3、alcl3或锰氧化物等化学试剂,耗时、成本高和环境不友好。
采用锂钠混合离子电池技术即可在储存和释放电能的同时又分离锂、钠离子。这种分离技术与现有其他化学方法相比,更为高效和绿色,因而其在大规模分离海或卤水中的锂、钠元素方面具有重要应用前景。
电化学储能有望成为21世纪具有持续、爆炸式发展潜力的新兴产业。基于钠离子电池的储能技术很可能是未来最重要的储能技术之一。
锂离子电池的发展导致全世界对锂资源的需求日益增加。据统计,至2012年,世界上83%的锂是从海或卤水中提取的,因此发展新型有效的分离技术迫在眉睫。