定制热线: 400-678-3556

行业资讯

深度揭秘四大动力电池技术路线优劣势

来源:宝鄂实业    2019-06-11 20:50    点击量:
 在氢燃料电池产业链中,上游是氢气的制取、运输和储藏,在加氢站对氢燃料电池系统进行氢气的加注;中游是电堆等关键零部件的生产,将电堆和配件两大部分进行集成,形成氢燃料电池系统;在下游应用层面,主要有交通运输、便携式电源和固定式电源三个方向。
  二、动力电池优劣势比较
  目前在交通运输用动力源方面,主要有四种技术路线:锂离子电池氢燃料电池、超级电容和铝空气电池。其中锂离子电池、超级电容和氢燃料电池得到广泛的应用,而铝空气电池尚处于实验室研究阶段。能源补给方面,锂离子电池、超级电容适用于纯电动汽车,但是需要外部充电,而氢燃料电池汽车则需要外部氢气加注,铝空气电池则需要补充铝板和电解液。
  氢燃料电池特性
  (1)良好的环境相容性
  氢燃料电池提供的是高效洁净能源,其排放的水不仅量少,而且非常干净,因而不存在水污染问题。同时由于燃料电池不像发动机那样需要将热能转换为机械能,而是直接把化学能转化为电能和热能,能量转换效率高,噪音小。
  (2)良好的操作性能
  氢燃料电池发电,不需要复杂庞大的配置设备,电池堆可以模块化组装。例如,一个 4.5MW 的发电装置可以 有 460 个电池组件组成,其发电厂占地面积比火力发电厂小得多。氢燃料电池适合作为分散发电装置。另外与火力、水力和核能发电相比,氢燃料电池电厂的建设周期短,扩建容易,可以完全根据实际需要分期建设。同时氢燃料电池的运行质量高,应对负载的快速变动(如高峰负载)特性优良,在数秒内就可以从低功率变换到额定功率。
  (3)高效的输出性能
  氢燃料电池工作时将燃料储存的能量转化为电和热,转换电能的效率在 40%以上,而汽轮机只有 1/3 可以转化为电。
  (4)灵活的结构特性
  氢燃料电池组装非常灵活,功率大小容易调配,与传统发动机相比,由于氢燃料电池良好的模块性可以在不增加基础设施投资的基础上,通过增减单电池的片数即可轻松实现输出功率和电压的调整,所以建设起来也很容易,而且比较容易实现对电网的调控。燃料电池的这一特点提高了系统稳定性。
  (5)氢的来源广泛
  氢作为二次能源,可通过多种方式获得,如煤制氢、天然气重整制氢、电解水制氢等等。在化石能源被耗尽时,氢将成为世界上的主要燃料及能量。而采用太阳能电解水制氢,过程中没有碳排放,可以认为氢是终极能源。
  (6)存在的瓶颈
  从现阶段发展来看,氢燃料电池的普及遇到一定的瓶颈,如电池本身成本较高,基础设施尚未普及等。
  2
  锂离子电池特性
  (1)电压平台
  锂离子电池由于采用的正负极材料不同,其单体电池的工作电压范围为3.7~4V,其中应用规模较大的磷酸铁锂单体电池工作电压为 3.2V,是镍氢电池的 3 倍、铅酸电池的 2 倍。
  (2)比能量大
  当前乘用车锂离子动力电池的能量密度接近 200Wh/kg,预计 2020 年达到300Wh/kg。
  (3)电池寿命短
  由于电化学材料特性的制约,锂离子电池的循环次数没有取得突破,以磷酸铁锂为例,单体电池循环次数可以达到 2000 次以上,成组后仅为 1000 次以上。无法满足公交运行 8 年期限的要求。
  (4)对环境影响较大
  锂离子电池采用轻金属锂,尽管不含汞、铅等有害重金属,被认为是绿色电池,对环境污染较小。但实际上由于其正负极材料、电解液包含镍、锰等金属物,美国已经将锂离子电池归类为一种包含易燃、浸出毒性、腐蚀性、反应性等有毒有害性的电池,是目前各类电池中包含毒性物质最多的电池,并且因为其回收再利用的工艺较为复杂导致成本较高,因此目前的回收再利用率不高,废弃的电池对环境影响较大。
  (5)成本依然较高
  锂离子电池初期购置成本高,以目前公交车用动力电池主流产品磷酸铁锂电池为例,价格大约在 2500 元/kWh,随着电动汽车的普及,有望在 2020 年降低到 1000 元/kWh以下。由于单体电池成组后循环次数的制约,公交车通常在 3 年左右即需要更换电池,运营单位成本压力较大。
  (6)对电网影响较大
  首先大规模应用纯电动汽车,由于充电需求较大,充电设备对电网的谐波干扰将会凸显,影响电网的供电质量;其次,在快充时,由于是大倍率充电,因此充电功率较高(乘用车在 50kW、客车在 150~250kW 左右),对电网的负荷冲击较大。
  因此,基于目前锂离子电池的技术水平来看,其电动汽车方面的应用主要在行驶里程小于 200km 的短途纯电动汽车中。
  3
  超级电容器特性
  (1)极高的充放电倍率
  超级电容具备较高的功率密度,可在短时间内放出几百到几千安培的电流,充电速度快,可在几十秒到几分钟内完成充电过程。超级电容公交车和有轨电车就是利用此特性在短时间内完成充电,驱动车辆前进。
  (2)循环寿命长
  超级电容的充放电过程损耗极小,因此在理论上其循环寿命为无穷,实际可达 100000 次以上,比电池高 10 ~100 倍。
  (3)低温性能较好
  超级电容充放电过程中发生的电荷转移大部分都在电极活性物质表面进行,所以容量随温度衰减非常小,而通常锂离子电池在低温下容量衰减幅度甚至高达70%。
  (4)能量密度太低
  超级电容应用的瓶颈之一就是能量密度太低,仅为锂离子电池的 1/20 左右,约 10Wh/kg。因此不能作为电动汽车主电源,大多作为辅助电源,主要用于快速启动装置和制动能量回收装置。
  4
  铝空气电池特性
  (1)材料成本低、能量密度高
  铝空气电池的负极活性材料是含量丰富的金属铝,价格便宜,环保,正极活性物质是空气中的氧气,正极容量可视无限大。因此铝空气电池具有质量轻,体积小,使用寿命长的优势。
  (2)关键技术未取得突破,尚未走出实验室
  空气电极极化和氢氧化铝沉降等问题是影响金属空气电池走向市场化的重要障碍,铝空气电池性能的提高遇到很大的瓶颈。目前尚处于实验室阶段,距离商业化推广还有一段不小的距离。
电动汽车
电动汽车的种类:纯电动汽车(BEV)、混合动力汽车(PHEV)、燃料电池汽车(FCEV)。
纯电动
电动汽车
纯电动汽车由电动机驱动的汽车。
纯电动汽车,相对燃油汽车而言,主要差别(异)在于四大部件,驱动电机,调速控制器、动力电池、车载充电器。相对于加油站而言,它由公用超快充电站。纯电动汽车之品质差异取决于这四大部件,其价值高低也取决于这四大部件的品质。纯电动汽车的用途也在四大部件的选用配置直接相关。
纯电动汽车时速快慢,和启动速度取决于驱动电机的功率和性能,其续行里程之长短取决于车载动力电池容量之大小,车载动力电池之重量取决于选用何种动力电池如铅酸、锌碳、锂电池等,它们体积,比重、比功率、比能量、循环寿命都各异。这取决于制造商对整车档次的定位和用途以及市场界定、市场细分。
纯电动汽车的驱动电机有直流有刷、无刷、有永磁、电磁之分,再有交流步进电机等,它们的选用也与整车配置、用途、档次有关。另外驱动电机之调速控制也分有级调速和无级调速,有采用电子调速控制器和不用调速控制器之分。电动机有轮毂电机、内转子电机、有单电机驱动、多电机驱动和组合电机驱动等。
优点:技术相对简单成熟,只要有电力供应的地方都能够充电。
缺点:蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵,至于使用成本,有些使用价格比汽车贵,有些价格仅为汽车的1/3,这主要取决于电池的寿命及当地的油、电价格。
混合动力
指能够至少从下述两类车载储存的能量中获得动力的汽车:
可消耗的燃料或可再充电能/能量储存装置。
根据动力系统结构形式可分为以下三类:
串联式混合动力汽车(SHEV):车辆的驱动力只来源于电动机的混合动力(电动)汽车。结构特点是发动机带动发电机发电,电能通过电机控制器输送给电动机,由电动机驱动汽车行驶。另外,动力电池也可以单独向电动机提供电能驱动汽车行驶。
并联式混合动力汽车(PHEV):车辆的驱动力由电动机及发动机同时或单独供给的混合动力(电动)汽车。结构特点是并联式驱动系统可以单独使用发动机或电动机作为动力源,也可以同时使用电动机和发动机作为动力源驱动汽车行驶。
混联式混合动力汽车(CHEV):同时具有串联式、并联式驱动方式的混合动力(电动)汽车。结构特点是可以在串联混合模式下工作,也可以在并联混合模式下工作,同时兼顾了串联式和并联式的特点。
(注:随着混合动力电动汽车技术的发展,其类型不局限于以上几种,还可按照其它型式划分。)
那些通常采用传统燃料的,同时配以电动机/发动机来改善低速动力输出和燃油消耗。国内市场上,混合动力车辆的主流都是汽油混合动力,而国际市场上柴油混合动力车型发展也很快。
优点:
1.采用混合动力后可按平均需用的功率来确定内燃机的最大功率,此时处于油耗低、污染少的最优工况下工作。需要大功率内燃机功率不足时,由电池来补充;负荷少时,富余的功率可发电给电池充电,由于内燃机可持续工作,电池又可以不断得到充电,故其行程和普通汽车一样。
2.因为有了电池,可以十分方便地回收制动时、下坡时、怠速时的能量。
3.在繁华市区,可关停内燃机,由电池单独驱动,实现“零”排放。
4.有了内燃机可以十分方便地解决耗能大的空调、取暖、除霜等纯电动汽车遇到的难题。
5.可以利用现有的加油站加油,不必再投资。
6.可让电池保持在良好的工作状态,不发生过充、过放,延长其使用寿命,降低成本。
缺点:长距离高速行驶基本不能省油。
燃料电池
以燃料电池作为动力电源的汽车。燃料电池的化学反应过程不会产生有害产物,因此
燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。
单个的燃料电池必须结合成燃料电池组,以便获得必需的动力,满足车辆使用的要求。
近几年来,燃料电池技术已经取得了重大的进展。世界著名汽车制造厂,如戴姆勒-克莱斯勒、福特、丰田和通用汽车公司已经宣布,计划在2004年以前将燃料电池汽车投向市场。当下,燃料电池轿车的样车正在进行试验,以燃料电池为动力的运输大客车在北美的几个城市中正在进行示范项目。在开发燃料电池汽车中仍然存在着技术性挑战,如燃料电池组的一体化,提高商业化电动汽车燃料处理器和辅助部汽车制造厂都在朝着集成部件和减少部件成本的方向努力,并已取得了显著的进步。

产品相关推荐