定制热线: 400-678-3556

行业资讯

特斯拉最新电池技术是什么?

来源:宝鄂实业    2019-06-20 11:53    点击量:
近期,特斯拉的100kWh车型,已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。
 
  按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。本文,我们来探究下,这个100kWh是如何做到的?
 
  Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。
 
  不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。
 
  有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。
 
  60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。
 
  后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。
 
  那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。
 
  这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?
 
  从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。
 
  在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。
 
  其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。
 
  然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。
 
  另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。
 
  基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。
 
  众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。
 
  21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。
 
  特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。
 
  90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。
 
  所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。
 
  而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。
 
  因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。
 
  如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。
 
  试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。
 
  未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业创新技术前沿。
 
  “小型、轻量、智能、电动、共享”将成为未来十年汽车业的核心关键词。伴随消费者逐渐成熟理性,以及能源、交通、安全等问题日益显著,汽车最终将回归智慧运输的本质:“更轻便、更智能、更安全”将是未来发展方向。汽车产业,将逐渐由封闭走向开放,由机械电控技术主导转向电子、通信、软件、材料、机械技术的深度融合。汽车业将成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。
 
  我们预计,到2030年智能电动车市场份额有望超50%。其中,新兴汽车公司或占半壁江山;未抓住变革机遇的传统车企可能沦为代工厂乃至退出市场。未来5年,ADAS及智能驾驶、车联网、车用芯片、账号及操作系统等技术值得关注。中国车企和创业型公司受益于资本力量和工程师红利,有望在智能化进程中承接更多全球分工。
 
  电动:降低造车门槛,开启汽车智能革命的序幕。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。新兴科技型车企快速涌现,并高举“智能化”卖点。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。电池仍占当前电动车成本50%,未来,有助于提升电池性能和电动车效率的技术值得关注,如:三元正极材料、湿法隔膜、石墨烯导电溶剂、轻量化等。
 
  智能:未来汽车业主战场从ADAS到无人驾驶。ADAS是智能汽车的重要落地,外资巨头如博世、大陆等占主导地位,中资公司差距相对较大。我们预计,到2020年中国ADAS市场规模可达2000亿。伴随市场规模快速成长,中资公司可能在后装ADAS和预警类ADAS领域寻求突破。对于上市公司和中资创业公司而言,可能存在的机会在于:1)汽车芯片、2)电子制动机构、3)激光雷达和毫米波雷达硬件和算法、4)基于摄像头和多传感器融合的算法等。
 
  车联网:智能的延伸和拓展,后装车联网快速发展倒逼前装。前装车联网目前覆盖的业务范围相对有限,常见于导航和基本服务等,如通用安吉星等。未来,前装车联网可能进一步延伸至V2V、V2X领域,成为ADAS系统在特殊场景下的感知机构的延伸。LET-V等标准值得关注。后装车联网快速生长,产业链持续延伸,逐渐形成基于导航、娱乐的金融保险(UBI等)、二手车服务模式,亦应用于汽车贷款、汽车共享等领域。未来,后装车联网基于“人”的生活服务,有可能逐渐演变为以车载操作系统和O2O为载体的前装业务。
 
  共享:建立在汽车智能基础上的商业模式创新。车联网是汽车共享的安全基石,未来无人驾驶可能彻底改变汽车共享业态。出行共享(有司机)快速发展,车辆跟踪和派单算法影响客户体验,资本力量对商业模式和产业格局影响较大。车辆共享(无司机)建立在车联网定位/追踪技术基础上,C2C模式(如凹凸租车、PP租车等)初露端倪。
 
  资本将发挥巨大作用。一级市场由此拉开又一轮科技投资热潮;二级市场优势公司有望凭借融资能力和上市公司地位整合产业链,乃至形阶段性闭环生态。但也需要注意的是,未来汽车变革之路以10年为单位计,必然伴随资本市场的周期波动和预期变化。Gartner曲线亦提示资本预期与产业进步速度差异可能导致的估值波动。对于布局智能汽车等先进技术的企业而言,融资能力、现金流管理亦成为技术实力之外的重要竞争要素。
 
  “智能”汽车领域值得长期投资布局。未来十年的汽车“智能”浪潮值得期待,汽车将由电控机械技术主导转向电子、通信、软件、材料、机械技术的深度融合,成为跨行业、多学科的创新技术前沿,亦将因此激发更多商业模式创新。
 
  1、电动:降低造车门槛,开启汽车智能革命的序幕
 
  电动车降低造车门槛,颠覆传统车企在“动力总成”领域的核心竞争力。电动车大幅精简汽车结构和零件数量,核心动力总成(如电机、电池、甚至电控)均可以向第三方采购,因此动摇传统车企的体系优势和竞争力。到2018年前后,以电动车为载体的智能汽车可能再次改变消费者对汽车的认知。
 
  电动化是未来发展方向。对于个人消费者而言,高端电动车能够提供强劲的动力性和推背感,低端电动车能够节省汽油开支、降低用车成本。对于国家而言,电动车便于排放集中处理,提升效率。
 
  能够帮助提升电池和电动车性能的技术值得重点关注。电池仍占当前电动车成本50%,面对问题包括:1)能量密度提升和成本下降,2)充电速度提升。值得重视的技术方向包括:1)三元正极材料;2)湿法隔膜;3)石墨烯导电溶剂。此外,小型化+轻量化亦是电动化的关键支撑,碳纤维、铝镁合金值得重视。
 
  电动车时代,整车企业原有的核心竞争力受到了撼动,智能将成核心竞争力。传统车企在“动力总成”领域的核心竞争力受到了挑战,新进入者打出“智能”牌,炫酷的屏幕和新技术对消费者构成较强吸引力。
 
  特斯拉拉开了汽车智能大战的序幕。开始接受预订以来,Model 3已累积接收近40万张订单,全球消费者对于智能和炫酷黑科技充满期待。
 
  电动化是未来发展趋势
 
  电动汽车带来驾驶乐趣的体验。电动汽车的加速性能秒杀传统燃油汽车。ModelS P90D可实现百公里加速2.8秒,创下世界纪录;比亚迪“唐”和“秦”也可轻松赢过燃油超跑。这是由电动机的工作特性决定的。
 
  节能减排是全球的发展主题。综合考虑从燃料开采到汽车驱动Well-to-Wheel全产业链效率,纯电动汽车与燃油车相当,但仍然具有低于汽油车的能耗和排放。
 
  我国石油对外依存度高,电动化是必然选择。据中国石油集团经济技术研究院统计,我国目前石油对外依存度超过60%,并且每年新增石油消费量70%以上为汽车。长期来看,燃油汽车的发展将会加剧我国石油危机,电动汽车成为必然选择。
 
  政策法规加速中国新能源汽车产业发展。2012年,国务院印发《节能与新能源汽车产业发展规划(2012-2020年)》,提出2015年乘用车平均燃料消耗量降至6.9升/百公里,到2020年降至5.0升/百公里。《中国制造2025》进一步提出,2025年乘用车油耗目标降至4.0升/百公里。法规标准倒逼乘用车企业发展电动汽车。
 
  中国新能源汽车产业在政策扶持下快速起飞。据统计,2015年中国新能源汽车销量达37.9万辆,同比增长4倍。我们认为,中国新能源汽车产业已经在政策扶持下走向技术进步。2016年我国新能源汽车销量有望达到60万辆,渗透率2%;至2030年,新能源销量可达2500万辆,渗透率50%。
  未来技术进步方向:动力电池技术提升
  新能源汽车带动相关产业链,2020年市场规模有望接近万亿,动力电池市场有望达到千亿级别。
 
  动力电池是新能源汽车关键环节。新能源汽车目前行业渗透率仍低于3%,电池成本居高不下是主要普及缓慢的主要原因之一。纯电动汽车电池成本约占整车成本近50%。电池能量密度提升、成本下降、充电速度提升是新能源汽车进一步普及的重要驱动力。
 
  三元正极材料电池能量密度较磷酸铁锂电池提高15%-30%,将成为乘用车动力电池主流技术路线。正极材料成本占锂电池比例接近40%,是决定电池性能的关键要素。我们预计,2020年三元正极材料市场规模有望超300亿。我们预计,2016年新能源汽车销量可达60万辆,带来三元材料电池10GWh需求。
 
  隔膜是锂离子电池的关键组件,湿法隔膜技术将进一步普及。受益于三元及高端磷酸铁锂电池渗透率提升,预计其2020年需求有望超18亿平方米,且受益于国产供需持续存在缺口,产品价格及利润率稳定。预计2020年湿法隔膜市场规模超50亿。 21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。
  特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。
  90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是90kWh。
  所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。
  而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。
  因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。
 

产品相关推荐