定制热线: 400-678-3556

行业资讯

液态锂电池的安全隐患主要来自哪些因素?

来源:宝鄂实业    2019-06-22 18:40    点击量:
溶剂具有易挥发、低闪点的特点,导致电解液的易燃性。液态锂离子电池采用的基本都是碳酸酯溶剂,主流溶剂有碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)等,基本都有挥发性强、闪点低的特点。在较高温度下易燃易爆,有一定毒性(碳酸酯溶剂有一定的致癌性),同时液体状态在暴力冲击下容易漏液。电解液溶剂的性质,决定了一般常规锂电池长时间工作温度需要低于55°C-60°C,即使是采用特殊配方的高温电解液,使用温度一般也不超过65°C。
 
负极表面容易形成枝晶,刺穿隔膜,造成正负极短路,导致电池起 火。液态锂离子电池普遍采用石墨作为负极,当负极表面不均匀时,在多次充放电循环过程中容易导致多余的锂在负极表面富集堆积,形成树枝状的锂枝晶。锂枝晶生长到一定的程度,可能刺穿具有微孔结构的隔膜,连接到正极极片,造成正负极短路。另一方面,新暴露在电解液中的锂枝晶会不断被电解液腐蚀,消耗电解液,降低电池循环寿命和容量。
 
液态锂电池在3C、动力电池等领域频繁发生起 火爆 炸等安全事故。由于液态锂电池具备以上因素带来的安全隐患,小到手机、笔记本电脑等3C电池,大到动力电池,均出现过起 火爆 炸等安全事故。主要引起安全事故的原因有过充、不恰当使用等导致电池温度过高,受到外部猛烈的碰撞、挤压导致电解液外溢,电池内部短路导致起 火,电池胀气、电解液外溢等。
 
固态锂电池可从根本上解决液态的安全隐患。全固态锂电池采用固体电解质,固体电解质一般由有机、无机化合物合成,熔点、沸点均较高,大部分材料不可燃,不含有任何低闪点、易燃易爆的有机溶剂,解决了电解液的易燃性。
 
同时,固体电解质薄膜致密无孔,机械强度较高,有效抑制负极锂枝晶刺穿造成短路的问题。在热稳定性和电化学稳定性方面也比电解液更好,能够承受住实际使用过程中出现的极端情况,比如碰撞、挤压等,极大的提升了锂电池的安全性能。
 
能量密度高:可采用金属锂做负极,有望提升40%-50%能量密度
 
金属锂比容量高,接近石墨负极的10倍。锂金属具备极高的容量,理论值达到3860mAh/g;石墨的理论容量只有372mAh/g,目前能实现的可逆容量有365mAh/g,高容量的硅基负极材料容量能达到1000-1500mAh/g,但在脱嵌过程中会发生较大的体积膨胀和收缩,实际中很难有效发挥出来,仅能达到420-450mAh/g。金属锂即使只发挥出50%的有效容量,也远高于石墨和硅基负极。虽然真正决定电池容量的材料是正极,但负极容量越高,越可以有效减少单位Wh负极材料的使用量,提升体积和质量能量密度。
 
金属锂负极不适用于液态锂电池。金属锂本身可以充当“锂源”,是非常理想的负极材料。最早在20世纪60至70年代,学术界便开始研究金属锂做负极的锂电池。但由于采用电解液,存在较大问题难以解决,即循环过程中会形成锂枝晶,刺穿隔膜导致短路,同时锂枝晶与电解液反应,循环寿命衰减严重,导致学术界转而研究比容量更低的碳作为嵌锂的负极材料。
 
固态锂电池可以使用金属锂作负极,相同正极体系下能量密度有望提升50%以上。在使用固体电解质的同时,可以采用目前的正负极材料体系,由于固体电解质较高的机械强度和韧性,以及致密的薄膜结构的特点,可以直接采用金属锂做负极,有效防止电解液对金属锂的腐蚀,锂枝晶刺穿隔膜导致短路的问题,有望在当前正极材料体系下,进一步提升电芯能量密度。
 
固态锂电池提升电池PACK能量密度,降低电池成本。传统液态锂电池由于内部含有流动的电解液,在电芯生产环节中,需要将多个正极/隔膜/负极片并联后,注入电解液,封装,焊接集流体接头。下一步电池PACK生产环节中,再将已封装好的多个电芯串联,同时由于高温下易燃易爆的电解液存在,需要额外添加冷却系统。
 
全固态锂电池制备过程中,由于不存在流动的电解液,电芯生产环节中,可以多层正极/固体电解质/负极材料致密堆积,串联叠加之后再封装焊接,节省电池内部空间,提高单体电芯的电压和能量密度。在电池PACK生产环节中,将单体电芯外部并联。由于固体电解质热稳定性较高,甚至在高温下电导率更优异,因此不需要额外添加冷却系统,在能量密度和成本上都具备一定的优势。